Мазда 626 диагностический разъем


6.3.3 Система бортовой самодиагностики (OBD) - общая информация

Система бортовой самодиагностики (OBD) - общая информация

  На моделях, оборудованных системой OBD II, на установленной под капотом шильде должна присутствовать запись «OBD II compliant», а диагностический разъем DLC должен быть 16-контактным. Как правило, системой OBD II обязательно оснащаются модели, предназначенные для североамериканского рынка, начиная с 1996 г. вып., а также европейские модели, начиная с 2000 г. вып.

Общее описание системы OBD Задачей любой бортовой системы самодиагностики (OBD) является выявление отказов и нарушений функционирования подконтрольных систем с занесением в память процессора соответствующих диагностических кодов (DTC) и оповещением водителя о факте нарушения (обычно посредством вмонтированной в комбинацию приборов контрольной лампы отказов MIL/«Проверьте двигатель»). Помимо кода DTC в памяти ECM фиксируется также текущие рабочие параметры двигателя на момент выявления нарушения. При нарушении исправности функционирования информационных датчиков, принимающих участие в процессе управления двигателем, ECM может произвести переключение систем в аварийный режим. При этом активируются базовые рабочие параметры, обеспечивающие адекватную работу двигателя (некоторый абсолютный псевдосигнал неисправного датчика симулируется непосредственно модулем управления), однако с неизбежным снижением эффективности его отдачи и увеличением расхода топилва, - автомобиль следует отогнать на станцию техобслуживания с целью выявления и устранения причин отказа. В состав системы OBD входят несколько диагностических устройств, производящих мониторинг отдельных параметров систем снижения токсичности и фиксирующих выявленные отказы в памяти бортового процессора в виде индивидуальных кодов неисправностей. Система производит также проверку датчиков и исполнительных устройств, контролирует эксплуатационные циклы транспортного средства, обеспечивает возможность замораживания параметров и очистки блока памяти. Рассматриваемые в настоящем Руководстве модели могут быть укомплектованы как системой бортовой диагностики второго поколения стандарта SAE (OBD II), так и фирменной системой OBD стандарта Subaru (некоторые из моделей 2.0 и 2.5 л). Основным элементом любой системы OBD является бортовой процессор, чаще называемый электронным модулем управления (ECM). ECM является мозгом системы управления двигателем. Исходные данные поступают на модуль от различных информационных датчиков и других электронных компонентов (выключателей, реле и т.д.), а также сигналы зарегистрированных OBD отказов и нарушений. Коды зарегистрированных неисправностей фиксируются в памяти процессора.

Считывание данных памяти процессора OBD производится при помощи специального сканера (стандарта SAE - GST или Subaru - SSM), подключаемого к 16-контактному диагностическому разъему считывания базы данных (DLC), расположенному под панелью приборов с водительской стороны автомобиля.

  Считывание кодов DTC на моделях с OBD II возможно при помощи как GST, так и SSM, на моделях с OBD Subaru - только с помощью монитора SSM.

На обслуживание компонентов систем управления двигателем/снижения токсичности отработавших газов распространяются особые гарантийные обязательства с продленным сроком действия. Не следует предпринимать попыток самостоятельного выполнения диагностики отказов ECM или замены компонентов системы, до выхода сроков данных обязательств, - обращайтесь к специалистам фирменных станций техобслуживания компании Subaru.

Сведения о диагностических приборах

Проверка исправности функционирования компонентов систем управления двигателем и снижения токсичности отработавших газов может производиться при помощи универсального цифрового измерителя (мультиметра). Использование цифрового измерителя предпочтительно по нескольким причинам. Во-первых, по аналоговым приборам достаточно сложно (порой, невозможно), определить результат показания с точностью до сотых и тысячных долях, в то время как при обследовании контуров, включающих в свой состав электронные компоненты, такая точность приобретает особое значение. Второй, не менее важной, причиной является тот факт, что внутренний контур цифрового мультиметра, имеет достаточно высокий импеданс (внутреннее сопротивление прибора составляет 10 миллионов Ом). Так как вольтметр подсоединяется к проверяемой цепи параллельно, точность измерения тем выше, чем меньший паразитный ток будет проходить через собственно прибор. Данный фактор не является существенным при измерении относительно высоких значений напряжения (9 ÷ 12 В), однако становится определяющим при диагностике выдающих низковольтные сигналы элементов, таких, как, например, лямбда-зонд, где речь идет об измерении долей вольта.

Параллельное наблюдение параметров сигналов, сопротивлений и напряжений во всех цепях управления возможно при помощи разветвителя, включаемого последовательно в разъем модуля управления (ECM). Измерение параметров сигналов на клеммах разветвителя в различных режимах функционирования двигателя позволяет определять текущее состояние последнего и выявлять имеющие место нарушения.

При диагностике электронных систем управления двигателем, трансмиссией, ABS и SRS применяются специальные сканеры стандарта SAE (GST), - OBD II, - или фирменный сканер Subaru Select Monitor (SSM), - OBD стандарта Subaru. Многие сканеры SAE второго поколения (OBD II) являются многофункциональными, за счет возможности смены картриджа в зависимости от модели диагностируемого автомобиля (Ford, GM, Chrysler и т.п.), другие привязаны к требованиям региональных властей и предназначены для использования в определенных районах мира (Европа, Азия, США и т.д.). Подключение сканера производится к бортовому диагностическому разъему DLC, назначение выводов которого разъяснено на иллюстрации.

  Попытки подключения к разъему DLC сканеров, отличных от GST OBD II или SSM чревато выходом из строя контура подключения монитора SSM!

Модели 2.0 и 2.5 л

1

Питание от батареи

2

Не используется

3

Не используется

4

Сигнал от ECM к сканеру SSM

5

Сигнал от сканера SSM к ECM

6

Тактовый сигнал SSM

7

Не используется

8

Не используется

9

Не используется

10

Линия К-Line ISO 9141 CARB

11

Не используется

12

Заземление

13

Заземление

14

Не используется

15

Не используется

16

Не используется
Модели 3.0 л

1

Питание от батареи

2

Не используется

3

Не используется

4

Не используется

5

Не используется

6

Тактовый сигнал SSM 1

7

Не используется

8

Тактовый сигнал SSM 2

9

Не используется

10

Линия К-Line ISO 9141 CARB

11

Не используется

12

Заземление

13

Заземление

14

Не используется

15

Не используется

16

Не используется
Еще одним способом считывания данных OBD является подключение к системе персонального компьютера, оборудованного специальным кабелем и оснащенного программным обеспечением OBD.

  Более подробную информацию считыванию данных при помощи сканеров можно узнать на сайтах www.obdii.com, www.obd-2.com и www.obd-2.de.

Универсальный адаптер К-L-Line служит для согласования сигналов порта RS-232 и интерфейсов ISO-9141 (K-Line) и ALDL. К разъемам адаптера могут подключаться различные кабели, позволяющие производить считывание данных OBD с автомобилей различных марок. Предусмотренные на адаптере переключатели и элементы индикации позволяют выбирать необходимые режимы работы и приблизительно оценивать качество функционирования выходных линий. Так, свечение зеленого светодиода с маркировкой L-Line свидетельствует о соединении линии L с массой автомобиля. Активация красного светодиода с маркировкой К-Line подтверждает о присутствии на линии К в текущий момент времени высокого потенциала. При установленной связи с системой OBD автомобиля мигание индикаторов может быть незаметно для глаза ввиду высокой скорости обмена данными. Подключение к компьютеру производится непосредственно в 25-контактный СОМ-порт или в 9-контактный СОМ-порт с помощью переходного кабеля RS232 25-9.

Некоторые считыватели помимо обычных диагностических операций позволяют при подсоединении к персональному компьютеру производить распечатывание хранящихся в памяти модуля управления принципиальные схемы различного оборудования (если таковые заложены в ECM), программировать противоугонную систему и блоки управления различных устройств автомобиля, а также в реальном времени наблюдать сигналы в электрических цепях автомобиля. На некоторых моделях считывание занесенных в память системы OBD кодов DTC может быть произведено также при помощи вмонтированный в приборный щиток автомобиля контрольной лампы отказов MIL/«Проверьте двигатель», - см. ниже.

  Более подробная информация по считыванию кодов неисправностей приведена в руководстве пользователя к сканеру. Список кодов неисправностей приведен в Спецификации к настоящей Главе.

Схемы расположения интерактивных компонентов используемых на рассматриваемых в настоящем Руководстве автомобилях систем бортовой диагностики представлены на иллюстрациях.

Схема расположения интерактивных компонентов системы бортовой диагностики на моделях, оборудованных системой бортовой самодиагностики OBD II

Схема расположения интерактивных компонентов системы бортовой диагностики на моделях 2.0 и 2.5 л, оборудованных OBD Subaru
Модели, оборудованные OBD II С применением сканера SSM, включенного в нормальный режим (Subaru) В главном меню (MAIN MENU) на экране дисплея выберите пункт {Each System Check} и нажмите клавишу «YES». В поле {System Select Menu} выберите закладку {Engine Control System}и вновь нажмите «YES». После вывода на экран данных о типе двигателя, нажмите «YES» еще раз. В поле {Engine Diagnosis} выберите пункт {Diagnostic Code(s) Display} и нажмите «YES». Далее выберите подпункт {Current Diagnostic Code(s)}, либо {History Diagnostic Code(s)}. Подтвердите выбор нажатием клавиши «YES» и произведите считывание выводимых на экран кодов DTC.

С применением сканера SSM, включенного в режим OBD (SAE)

В главном меню (MAIN MENU) на экране дисплея выберите пункт {2. Each System Check} и нажмите клавишу «YES». В поле {System Select Menu} выберите закладку {Engine Control System}. И вновь нажмите «YES». После вывода на экран данных о типе двигателя, нажмите «YES» еще раз. В поле {Engine Diagnosis} выберите пункт {OBD System} и нажмите «YES». В меню {OBD Menu} выберите пункт {Diagnostic Code(s) Display}, нажмите «YES» и удостоверьтесь в выводе кодов DTC на экран монитора.

С применением сканера GST (SAE)

Действуйте в соответствии с прикладываемыми к сканеру инструкциями.

Модели, оборудованные OBD Subaru

С применением сканера SSM Действуйте в соответствии с инструкциями.

Без применения сканера SSM (по контрольной лампе отказов MIL/«Проверьте двигатель»)

Выключите зажигание и соедините разъем считывания данных из памяти процессора. Включите зажигание. Если при включении зажигания контрольная лампа MIL активируется, переходите к следующему этапу проверки, в противном случае проверьте на наличие обрывов и коротких замыканий электропроводку подачи питания и заземления ECM, а также электропроводку лампы MIL. Произведите необходимые исправления. Удостоверьтесь в исправности высвечивания контрольной лампой отказов кода неисправности (DTC). Перепишите идентифицированные коды, затем выключите зажигание и рассоедините разъем считывания данных.

Контрольная лампа отказов (MIL) высвечивает занесенные в память ECM коды DTC в виде последовательности проблесков различной длины. При этом длинными проблесками (продолжительностью порядка 1.3 секунды) обозначаются десятичные разряды кода, короткими (длительностью около 0.2 с) - единичные разряды, последовательность проблесков продолжительностью 0.5 секунды соответствует коду отсутствия DTC в памяти процессора.

Информационное содержание разрядов 5-разрядного кода вида P0380 Разряды кода вида Р 0 3 8 0 имеют следующее значение (слева направо):

Разряд 1

P — Силовой агрегат B — Кузов С — Шасси

Разряд 2 Источник кода

0 — Стандарт SAE 1 — Расширенный - задаваемый производителем

Разряд 3 Система

0 — Система в целом 1 — Система подмешивания воздуха (Air/Fuel Induction) 2 — Система впрыска топлива 3 — Система зажигания/Пропуски зажигания 4 — Система дополнительного контроль выпуска 5 — Скорость автомобиля и управление оборотами х/х 6 — Входные и выходные сигналы модуля управления 7 — Трансмиссия

Разряды 4 и 5

Порядковый номер неисправности компонента или цепи 00-99

Процедура общей диагностики автомобиля

  Более подробная информация по считыванию кодов неисправностей приведена в руководстве пользователя к сканеру. Список кодов неисправностей приведен в Спецификациях к настоящей Главе.

Модели, оборудованные OBD II Поднимите автомобиль над землей, либо загоните его на роликовый стенд.

  Помните, что во время проверки вращаться будут все четыре колеса автомобиля, - проследите, чтобы вблизи колес не находились никакие инструменты и посторонние предметы!

Проверка с применением сканера SSM

  После завершения проверки и очистки памяти процессора удостоверьтесь в отсутствии оставшихся не идентифицированными данных.

Извлеките из чемоданчика сканер SSM и подсоедините к нему диагностический кабель. Заправьте в сканер рабочий картридж.

Соедините половинки расположенного слева под панелью приборов разъема режима тестирования. Подключите SSM к расположенному также слева под панелью приборов диагностическому разъему DLC.

  Разъем DLC предназначен для подключения только сканеров типа SSM или GST OBD-II!

Включите зажигание (двигатель не запускайте), затем включите питание сканера.

В главном меню (MAIN MENU) на экране дисплея выберите пункт {Each System Check} и нажмите клавишу «YES». В поле {System Select Menu} выберите закладку {Engine Control System}. И вновь нажмите «YES». После вывода на экран данных о типе двигателя, нажмите «YES» еще раз. В поле {Engine Diagnosis} выберите пункт {Dealer Check Mode Procedure} и нажмите «YES». После вывода на экран монитора вопроса «Perform Inspection (Dealer Check) Mode?» введите подтверждение, также путем нажатия на клавишу «YES». Далее действуйте согласно выводимым на экран инструкциям. Если после завершения процедуры в памяти процессора сохранятся какие-либо DTC, соответствующая информация будет выведена на экран монитора. Отпустите стояночный тормоз, - разница в частоте вращения передних и задних колес может явиться причиной срабатывания контрольной лампы ABS, однако не следует рассматривать как признак нарушения, - после завершения процедуры диагностики системы управления двигателем не забудьте удалить из памяти процессора код неисправности ABS.

Проверка с применением сканера GST

  После завершения проверки и очистки памяти процессора удостоверьтесь в отсутствии оставшихся не идентифицированными данных.

Соедините половинки расположенного слева под панелью приборов разъема режима тестирования. Подключите GST к расположенному также слева под панелью приборов диагностическому разъему DLC.

  Разъем DLC предназначен для подключения только сканеров типа SSM или GST-OBD II!

Запустите двигатель, - предварительно удостоверьтесь, что рычаг селектора АТ находится в положении «Р». При помощи рычага селектора/переключения передач активируйте датчики-выключатели положений «Р» и «N» трансмиссии. Для активации датчика-выключателя стоп-сигналов выжмите педаль ножного тормоза. В течение около 40 секунд удерживайте частоту вращения двигателя в диапазоне 2500 ÷ 3000 об/мин.

  На моделях без встроенного тахометра воспользуйтесь тахометром с индуктивным подключением.

Переведите рычаг селектора в положение «D» и установите скорость движения 5 ÷ 10 км/ч (3 ÷ 6 миль/ч).

  На моделях AWD не забудьте отпустить стояночный тормоз, - разница в частоте вращения передних и задних колес может явиться причиной срабатывания контрольной лампы ABS, однако не следует рассматривать как признак нарушения, - после завершения процедуры диагностики системы управления двигателем не забудьте удалить из памяти процессора код неисправности ABS.

При помощи сканера GST считайте и перепишите занесенные в память процессора коды неисправностей (DTC).

Модели, оборудованные OBD Subaru

Проверка с применением сканера SSM Действуйте в соответствии с указаниями, приведенными в подразделе Проверка с применением сканера SSM выше. Проверка без применения сканера SSM

  На моделях AWD не забудьте отпустить стояночный тормоз, - разница в частоте вращения передних и задних колес может явиться причиной срабатывания контрольной лампы ABS, однако не следует рассматривать как признак нарушения, - после завершения процедуры диагностики системы управления двигателем не забудьте удалить из памяти процессора код неисправности ABS.

Запустите двигатель и прогрейте его до нормальной рабочей температуры. Выключите зажигание и включите нейтральную передачу (модели с РКПП)/переведите рычаг селектора в положение «Р» (модели с АТ). Соедините половинки разъема режима тестирования (окрашен в зеленый цвет), затем включите зажигание, - если произошла активация контрольной лампы отказов (MIL), переходите к следующему этапу проверки, в противном случае проверьте на наличие обрывов и коротких замыканий электропроводку подачи питания и заземления ECM, а также электропроводку лампы MIL. Произведите необходимые исправления. На моделях с АТ переведите рычаг селектора в положение «N», затем в «Р». Запустите двигатель и перепишите высвечиваемые контрольной лампой MIL коды. Если лампа никакие коды не высвечивает, переходите к следующему этапу проверки. Минимум на одну минуту разгоните автомобиль до скорости 11 км/ч (7 миль/ч). Поднимите частоту вращения двигателя до значения свыше 2000 об/мин. Перепишите высвечиваемые лампой MIL коды, - если никакие коды лампой не выводятся, следовательно, отказ имеет иную причину.

Очистка памяти системы самодиагностики

  Более подробная информация по считыванию кодов неисправностей приведена в руководстве пользователя к сканеру.

Модели, оборудованные OBD II С применением сканера SSM, включенного в нормальный режим (Subaru) В главном меню (MAIN MENU) на экране дисплея выберите пункт {2. Each System Check} и нажмите клавишу «YES». В поле {System Select Menu} выберите закладку {Engine Control System}. И вновь нажмите «YES». После вывода на экран данных о типе двигателя, нажмите «YES» еще раз. В поле {Engine Diagnosis} выберите пункт {Clear Memory} и нажмите «YES». После того как на экран монитора будут выведены сообщения «Done» и «Turn Ignition Switch OFF», выключите сканер, затем поверните ключ в замке зажигания в положение OFF.

  На моделях 2.0 и 2.5 л после завершения очистки памяти процессора необходимо произвести инициализацию электромагнитного клапана стабилизации оборотов холостого хода (IAC), - поверните ключ в положение ON и, прежде чем осуществлять запуск двигателя, обождите не менее 3 секунд.

С применением сканера SSM, включенного в режим OBD (SAE) В главном меню (MAIN MENU) на экране дисплея выберите пункт {2. Each System Check} и нажмите клавишу «YES». В поле {System Select Menu} выберите закладку {Engine Control System}. И вновь нажмите «YES». После вывода на экран данных о типе двигателя, нажмите «YES» еще раз. В поле {Engine Diagnosis} выберите пункт {OBD System} и нажмите «YES». В меню {OBD Menu} выберите пункт {4. Diagnosis Code(s) Cleared}, нажмите «YES». После вывода на экран запроса «Clear Diagnosis Code?» введите подтверждение нажатием клавиши «YES», затем выключите питание сканера и зажигание.

  На моделях 2.0 и 2.5 л после завершения очистки памяти процессора необходимо произвести инициализацию электромагнитного клапана IAC.

С применением сканера GST (SAE) Действуйте в соответствии с прикладываемыми к сканеру инструкциями. На моделях 2.0 и 2.5 л не забудьте произвести инициализацию клапана IAC.

Модели, оборудованные OBD Subaru

С применением сканера SSM

Действуйте в соответствии с инструкциями, приведенными выше.

Без применения сканера SSM (по контрольной лампе отказов MIL/»Проверьте двигатель»)

Выключите зажигание и включите нейтральную передачу (модели с РКПП)/переведите рычаг селектора в положение «Р» (модели с АТ). Соедините половинки разъема режима тестирования (окрашен в зеленый цвет), затем включите зажигание, - если произошла активация контрольной лампы отказов (MIL), переходите к следующему этапу проверки, в противном случае проверьте на наличие обрывов и коротких замыканий электропроводку подачи питания и заземления ECM, а также электропроводку лампы MIL. Произведите необходимые исправления. На моделях с АТ переведите рычаг селектора в положение «N», затем в «Р». Запустите двигатель и минимум на одну минуту разгоните автомобиль до скорости 11 км/ч (7 миль/ч).

Поднимите частоту вращения двигателя до значения свыше 2000 об/мин. Перепишите высвечиваемые лампой MIL коды и произведите необходимый восстановительный ремонт (список кодов DTC приведен в Спецификациях).

Выключите зажигание и рассоедините разъем режима тестирования.

Подключение персонального компьютера к бортовой системе самодиагностики OBD II посредством интерфейсного контроллера BR16F84-1.0 по протоколам стандартов SAE (PWM и VPW) и ISO 9141-2

  Контроллер не предназначен подключения к бортовым системам самодиагностики первого поколения (OBD I)!

Стандарту VPW отвечают модели производства компании GM, PWM - Ford, ISO 9141-2 - азиатские и европейские модели.

Общие данные Схема организации подключения представлена на иллюстрации.
Рассматриваемое устройство представляет собой микроконтроллер, выполненный по технологии КМОП (CMOS). Устройство исполняет роль простейшего сканера и предназначено для считывания диагностических кодов и данных системы OBD II (обороты двигателя, температура охлаждающей жидкости и всасываемого воздуха, нагрузочные характеристики, расход поступающего в двигатель воздуха и т.п.) в рамках стандарта SAE J1979 через шину любого исполнения (PWM, VPW и ISO 9141-2). Для подключения к компьютеру достаточно 3-жильного провода, подключение к диагностическому разъему осуществляется 6-жильным проводом. Напряжение питания подается на контроллер через 16-контактный диагностический разъем OBD.

Рекомендации по применению

Для подключения устройства к автомобилю может быть использован неэкранированный кабель, длиной не более 1.2 м, что имеет особое значение при использовании протокола PWM. При использовании кабеля большей длины следует уменьшить сопротивление резисторов на входе устройства (R8 и R9 или R15). При использовании экранированного кабеля, экран следует отключить с целью снижения емкости. Кабель для подключения к последовательному порту компьютера также может быть неэкранированным. Устройство стабильно работает с кабелем длиной до 9 м. При значительно большей длине кабеля следует использовать более мощный коммуникатор RS 232. Топология электрических соединений произвольна. При повышенной влажности применяйте дополнительные шунтирующие конденсаторы. Бесплатное программное обеспечение (броузер) для считывания кодов и данных может быть скачано с сайтов производителей либо сайта нашего издательства arus.spb.ru и предназначено для использования под DOS. Незначительный размер программного приложения в варианте «под DOS» позволяет вместить его на загрузочную дискету DOS и использовать даже на компьютерах, оснащенных несовместимым с DOS программным обеспечением. Необязательным условием является даже наличие в компьютере жесткого диска.

Общие принципы обмена данными

  Если противное не оговорено особо, все числа приведены в 16-ричном формате (hex). Десятичный формат обозначается меткой dec.

Обмен данными идет по трехпроводному последовательному соединению без применения инициализационного обмена служебными сообщениями (handshaking). Устройство прослушивает канал на наличие сообщений, выполняет принимаемые команды и передает результаты на персональный компьютер (PC), после чего немедленно возвращается в режим прослушивания. Входящие в контроллер и исходящие из него данные организованы в виде цепочки последовательно идущих друг за другом байтов, первый из которых является контрольным. Обычноконтрольный байт представляет собой число от 0 до 15 dec (в десятичном исчислении) (или 0-F hex), описывающее количество следующих далее информационных байтов. Так, например, 3-байтная команда будет выглядеть следующим образом: 03 (контрольный байт), 1-й байт, 2-й байт, 3-й байт. Подобный формат используется как для входящих команд на опрос бортовой системы самодиагностики, так и для исходящих сообщений, содержащих запрошенную информацию. Следует заметить, что в контрольном байте используются лишь четыре младших бита, - старшие биты зарезервированы под некоторые специальные команды и могут быть использованы PC при инициализации соединения с контроллером и согласовании протокола передачи данных, а также контроллером для контроля ошибок передачи. В частности, в случае ошибки при передаче, контроллер производит установку старшего значащего бита (MSB) контрольного байта в единицу. При успешной передаче все четыре старших бита устанавливаются в ноль.

  Существуют отдельные исключения из правил использования контрольного байта.

Инициализация контроллера и бортовой системы самодиагностики Для начала обмена данными PC должен произвести установку соединения с контроллером, затем инициализировать контроллер и канал данных OBD II. После подсоединения контроллера к PC и диагностическому разъему OBD должна быть произведена его инициализация с целью предотвращения «зависаний», связанных с шумами в последовательных линиях в случае если их подсоединение было произведено до включения питания контроллера. Одновременно производится простейшая проверка активности интерфейса. В первую очередь посылается однобайтовый сигнал 20 hex, воспринимаемый контроллером как команда на установку соединения. В ответ контроллер вместо контрольного высылает единственный байт FF hex (255 dec) и переходит в режим ожидания приема данных. Теперь PC может переходить к инициализации канала данных.

  Данный случай является одним из немногих, когда контроллер не использует контрольный байт.

Инициализация На данном этапе производится инициализация протокола, по которому будет производиться обмен данными, а в случае протокола ISO – инициализация бортовой системы. Обмен данными производится по одному из трех протоколов: VPW (General Motors), PWM (Ford) и ISO 9141-02 (азиатские/европейские производители).

  Существует множество исключений: так, например, при опросе некоторых моделей автомобилей Mazda может использоваться «фордовский» протокол PWM. Таким образом, при возникновении проблем передачи следует в первую очередь попытаться воспользоваться каким-либо другим протоколом. Выбор протокола производится передачей комбинации, состоящей из контрольного байта 41 hex и следующего непосредственно за ним байта, определяющего тип протокола: 0 = VPW, 1 = PWM, 2 = ISO 9141. Так, например, по команде 41 02 hex производится инициализация протокола ISO 9141.

В ответ контроллер высылает контрольный байт и байт состояния. Установка MSB контрольного байта говорит о наличии проблем, при этом следующий за ним байт состояния будет содержать соответствующую информацию. При успешной инициализации высылается контрольный байт 01 hex, указывающий на то, что далее следует верификационный байт состояния. В случае протоколов VPW и PWM верификационный байт представляет собой простое эхо определяющего протокол байта (0 или 1, соответственно), при инициализации протокола ISO 9141 это будет цифровой ключ, возвращаемый бортовым процессором OBD и определяющий, какая именно из двух незначительно отличающихся друг от друга версий протокола будет использоваться.

  Цифровой ключ имеет чисто информационное назначение. Следует заметить, что инициализация протоколов VPW и PWM происходит значительно быстрее, так как требует лишь передачи соответствующей информации контроллеру. На моделях, отвечающих стандарту ISO, инициализация занимает порядка 5 секунд, затрачиваемых на информационный обмен контроллера с бортовым процессором, производимый со скоростью 5 бод. Следует обратить внимание читателя, что на некоторых моделях автомобилей семейства ISO 9141 инициализация протокола приостанавливается, если запрос на выдачу данных не будет передан в течение 5-секундного интервала, - сказанное означает, что PC должен производить автоматическую выдачу запросов каждые несколько секунд, даже в холостом режиме.

После установки соединения и инициализации протокола начинается штатный обмен данными, состоящими из поступающих от PC запросов и выдаваемых контроллером ответов. Функционирование контроллера при использовании протоколов семейства ISO 9141-2 и SAE (VPW и PWM) происходит по несколько различным сценариям.

Обмен по протоколам SAE (VPW и PWM)

При обмене данными по данным протоколам происходит буферизация лишь одного кадра данных, что означает необходимость конкретизации подлежащего захвату или возврату кадра. В некоторых (редких) случаях бортовой процессор может передавать пакеты, состоящие более чем из одного кадра. В такой ситуации запрос должен повторяться до тех пор, пока все кадры пакета не будут приняты. Запрос всегда формируется следующим образом: [Контрольный байт], [Запрос по стандарту SAE], [Номер кадра]. Как уже упоминалось выше, контрольный байт обычно представляет собой число, равное полному количеству следующих за ним байтов. Запрос оформляется в соответствии со Спецификациями SAE J1950 и J1979 и состоит из заголовка (3 байта), последовательности информационных байтов и байта контроля ошибки (CRC) . Заметим, что в то время как информация по запросу формируется в строгом соответствии со Спецификациями SAE, потребителем контрольного байта и номера кадра является интерфейсный контроллер. При успешном завершении процедуры ответное сообщение всегда имеет следующий формат: [Контрольный байт], [Ответ по стандарту SAE]. Контрольный байт, как и ранее, определяет количество следующих за ним информационных байтов. Ответ в соответствии с требованиями стандарта SAE состоит из заголовка (3 байта), цепочки информационных байтов и байта CRC. При сбое высылается 2-байтное ответное сообщение: [Контрольный байт], [Байт состояния]. При этом в контрольном байте производится установка MSB. Четыре младших бита формируют число 001, свидетельствующее о том, что за контрольным следует единственный байт, - байт состояния. Данная ситуация может возникать достаточно часто, так как Спецификации допускают возможность невыдачи бортовым процессором данных, а также передачу неверных данных в случае, когда запрос не соответствует поддерживаемому производителями автомобиля стандарту. Возможна также ситуация, когда запрашиваемые данные отсутствуют в оперативной памяти процессора в текущий момент времени. Когда контроллер не получает ожидаемого ответа, или получает поврежденные данные, производится установка MSB контрольного байта, а следом за контрольным выдается байт состояния. При коллизиях в шине интерфейс вырабатывает единственный байт 40 hex, являющийся контрольным байтом с обнуленным младшим битом. Подобная ситуация может возникать достаточно часто при загрузке автомобильной шины сообщениями более высокого чем у диагностических данных приоритета, - вычислительное устройство должно повторить исходный запрос.

Обмен по протоколам ISO 9141-2

Стандарт ISO 9141-2 используется большинством азиатских и европейских производителей автомобильной техники. Структура формируемого PC запроса мало чем отличается от используемой в стандартах SAE, с той лишь разницей, что контроллер не нуждается в информации о номере кадра и соответствующие данные присутствовать в пакете не должны. Таким образом, запрос всегда состоит из контрольного байта и следующей за ним цепочки информационных байтов, включающих в себя контрольную сумму. В качестве ответного сообщения контроллер просто ретранслирует сформированные бортовым процессором сигналы. Контрольный байт в ответном сообщении отсутствует, поэтому PC воспринимает поступающую информацию непрерывным потоком до тех пор, пока цепочка не прерывается паузой в 55 миллисекунд, сообщающей о завершении информационного пакета. Таким образом, ответное сообщение может состоять из одного или более кадров в соответствии с требованиями спецификаций SAE J1979. Контроллер не производит анализ кадров, не отбрасывает недиагностические кадры и т.д. PC должен собственными силами производить обработку поступающих данных с целью вычленения отдельных кадров путем анализа заголовочных байтов.

  Ответы на большинство запросов состоят из единственного кадра.

Модификации, произведенные в интерфейсных контроллерах последних версий

  Все информационные байты передаются в 16-ричном формате (hex).

Символом XX означается неопределенный, зарезервированный или неопознанный байт.

Ниже приведены основные отличия процесса передачи данных по протоколам SAE и ISO 9141, характерные для интерфейсных контроллеров последних версий, а также порядок передачи данных по протоколу ISO 14230: 1) Стандарт ISO 9141: Добавлен адресный байт; 2) Стандарт ISO 9141: Осуществляется возврат не одного, а обоих ключевых байтов (дополнительный байт возвращается также в режимах SAE, однако здесь он не используется); 3) Добавлена поддержка протокола ISO 14230. Порядок установки соединения не изменился: Отправка: 20 Прием: FF Выбор протокола Протокол выбирается в следующим образом: VPW: Отправка: 41, 00 Прием: 02, 01, XX PWM: Отправка: 41, 01 Прием: 02, 01, XX ISO 9141: Отправка: 42, 02, adr, где: adr - адресный байт (обычно 33 hex) Прием: 02, К1, К2, где К1, К2 - ключевые байты ISO Или: 82, XX, XX (ошибка инициализации ISO 9141) ISO 14230 (быстрая инициализация): Отправка: 46, 03, R1, R2, R3, R4, R5, где: R1 ÷ R5 - сообщение о начале запроса ISO 14230 на установку соединения, обычно R1 ÷ R5 = С1, 33, F1, 81, 66

Прием: S1, S2, ………, где S1, S2, ……… - сообщение о начале ответа ISO 14230 на установку соединения

  Могут передаваться последовательно более одного ECU. В качестве ответа может использоваться отрицательный код ответа.

Типичный положительный ответ выглядит следующим образом: S1, S2, ……. = 83, F1, 10, С1, Е9, 8F, BD ISO 14230 (медленная инициализация): Аналогично ISO 9141

Замечание и комментарии

Если планируется использование контроллера для передачи данных лишь по какому-либо одному или двум из протоколов, лишние компоненты могут быть исключены. Например, при организации схемы под протокол VPW (GM) в проводе подключения контроллера к автомобилю потребуются лишь три жилы электропроводки (клеммы 16, 5 и 2). Если не используется протокол PWM, могут быть исключены элементы R4, R6, R7, R8, R9, R10, Т1, Т2 и D1. При отказе от обмена по протоколу ISO исключению подлежат элементы: R15, R16, R17, R18, R19, R21, Т4 и Т5. Отказ от использования протокола VPW позволяет исключить следующие элементы: R13, R14, R23, R24, D2, D3 и Т3. Применены угольно-пленочные резисторы с 5-процентным допуском сопротивления.

Обратите внимание на отсутствие кнопки аварийной перезагрузки (RESET), - в случае необходимости такая перезагрузка может быть произведена путем отсоединения контроллера от автомобильного разъема (перезагрузка интерфейсного процессора произойдет автоматически). Перезапуск программного обеспечения на PC приводит к повторной инициализации интерфейса.

automn.ru

14.8 Диагностика неисправностей SRS

Диагностика неисправностей SRS

Система самодиагностики SRS

Проверка исправности функционирования контрольной лампы SRS/AIR BAG

Включите зажигание, - контрольная лампа SRS должна загореться и оставаться с горящем состоянии в течение около 8 секунд. Отказ лампы от выключения свидетельствует о том, что модуль самодиагностики ECU SRS выявил неисправность, код которой занесен в память процессора (см. ниже).

Считывание кодов неисправностей SRS

1. Включите зажигание (двигатель не запускайте).
2. Подсоедините диагностическую клемму к клемме № 1 диагностического разъема, расположенного под нижней крышкой панели приборов, вблизи консоли.
3. Считывание записанных в память модуля самодиагностики кодов производится путем подсчета проблесков контрольной лампы SRS/AIR BAG. Длинный проблеск (1.2 с) соответствует десяткам (10), короткий (0.3 с), - единицам. Так, код 12 будет выглядеть следующим образом: один длинный проблеск + два коротких. 4. Коды высвечиваются трижды с интервалами в 1.5 с. Запишите считанную последовательность, затем выключите зажигание, отсоедините диагностическую клемму, проанализируйте коды (см. ниже) и произведите необходимый восстановительный ремонт.
Очистка памяти блока самодиагностики
1. Закончив работы по исправлению выявленных неполадок, повторите процедуру считывания кодов неисправностей. 2. Удостоверьтесь, что зажигание включено и подсоедините диагностическую клемму А к клемме № 1 диагностического разъема.
3. В ходе высвечивания кодов контрольной лампой минимум на 3 секунды подсоедините клемму В к клемме № 2 диагностического разъема. Удостоверьтесь в очистке памяти. Отсоедините обе клеммы от диагностического разъема.

Очистка памяти блока самодиагностики не может быть произведена, если неисправность по-прежнему имеет место.

Диагностика отказов SRS

Схема расположения контактных разъемов SRS

1. Произведите бортовую диагностику. При выявлении кодов 11, 12, 15 или 16 переходите к следующему этапу, в противном случае продолжайте диагностику путем анализа соответствующих кодов (см. ниже). 2. При выявлении кодов 12 или 16 переходите к следующему этапу проверки, в противном случае переходите к выполнению процедуры параграфов 10 ÷ 14.

3. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

4. Снимите вещевой ящик и рассоедините контактный разъем пассажирской подушки безопасности АВ9, расположенный справа под панелью приборов.
5. Подсоедините разъем 1F диагностического жгута F к разъему АВ9.
6. Подсоедините резистор подушки безопасности к разъему 3F диагностического жгута.
7. Снимите левую нижнюю секцию отделки панели приборов. 8. Рассоедините нижний разъем АВ8 кабельного барабана и подсоедините к нему клемму 1F второго диагностического жгута к разъему АВ8. К разъему 3F жгута подсоедините второй резистор подушки безопасности.

9. Подсоедините отрицательный провод к батарее и включите зажигание. Если контрольная лампа SRS/AIR BAG отключится спустя 7 секунд и будет оставаться в отключенном состоянии в течение более 30 секунд, замените модуль пассажирской подушки безопасности (см. Раздел Снятие и установка компонентов SRS) и переходите к выполнению процедуры параграфа 18. Если контрольная лампа высветит код неисправности, переходите к устранению причин соответствующего отказа (см. ниже).

10. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

11. Восстановите исходное подсоединение нижнего разъема АВ8 кабельного барабана. 12. Снимите модуль водительской подушки безопасности (см. Главу Подвеска и рулевое управление).
13. Подсоедините разъем 1F диагностического жгута к разъема АВ7 к разъему 3F жгута подключите резистор подушки безопасности.
14. Подсоедините отрицательный провод к батарее и включите зажигание. Если контрольная лампа SRS/AIR BAG отключится спустя 7 секунд и будет оставаться в отключенном состоянии в течение более 30 секунд, замените модуль водительской подушки безопасности (см. Раздел Снятие и установка компонентов SRS) и переходите к выполнению процедуры параграфа 18. В противном случае (лампа не гаснет, либо включается до окончания оговоренного временного интервала), переходите к следующему этапу проверки. 15. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

16. Снимите левую нижнюю секцию отделки панели приборов. 17. Рассоедините нижний разъем АВ8 кабельного барабана и подсоедините к нему клемму 1F второго диагностического жгута к разъему АВ8. К разъему 3F жгута подсоедините второй резистор подушки безопасности. 18. Подсоедините отрицательный провод к батарее и включите зажигание. Если контрольная лампа SRS/AIR BAG отключится спустя 7 секунд и будет оставаться в отключенном состоянии в течение более 30 секунд, замените кабельный барабан, в противном случае (лампа не гаснет, либо включается до окончания оговоренного временного интервала), произведите считывание кодов и переходите к устранению причин выявленных отказов.

19. Подсоедините отрицательный провод к батарее и включите зажигание. Если контрольная лампа SRS/AIR BAG отключится спустя 7 секунд и будет оставаться в отключенном состоянии в течение более 30 секунд, очистите память модуля самодиагностики, в противном случае повторите весь цикл проверок (см. выше).

Диагностический код 11

Схема расположения контактных разъемов SRS

1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Подсоедините разъем 1F диагностического жгута F к разъему АВ8.
6. Рассоедините центральный разъем АВ6 жгута электропроводки модуля управления SRS и подключите его к разъему 1I диагностического жгута I.
7. Измерьте сопротивление между клеммой № 1 разъема 2I жгута I и клеммой № 3 разъема 3F жгута F. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае произведите замену главного жгута электропроводки SRS. 8. Измерьте сопротивление между клеммам №№ 4 разъемов 2I и 3F. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 9. Измерьте сопротивление между клеммами №№ 1 и 4 контактного разъема 2I. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 10. Измерьте сопротивление между массой и клеммой № 4 контактного разъема 2I. Если результат измерения составляет более 200 Ом, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 11. Измерьте сопротивление между массой и клеммой № 1 контактного разъема 2I. Если результат измерения составляет б олее 200 Ом, замените модуль управления (ECU) SRS, в противном случае замените главный жгут электропроводки SRS.
Диагностический код 12
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Подсоедините разъем 1F диагностического жгута F к разъему АВ9.
6. Рассоедините центральный разъем АВ6 жгута электропроводки модуля управления SRS и подключите его к разъему 1I диагностического жгута I.
7. Измерьте сопротивление между клеммой № 2 разъема 2I жгута I и клеммой № 3 разъема 3F жгута F. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае произведите замену главного жгута электропроводки SRS. 8. Измерьте сопротивление между клеммой № 5 разъема 2I жгута I и клеммой № 4 разъема 3F жгута F. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 9. Измерьте сопротивление между клеммами №№ 2 и 5 контактного разъема 2I. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 10. Измерьте сопротивление между массой и клеммой № 2 контактного разъема 2I. Если результат измерения составляет более 200 Ом, замените модуль управления (ECU) SRS, в противном случае замените главный жгут электропроводки SRS. 11. Измерьте сопротивление между массой и клеммой № 5 контактного разъема 2I. Если результат измерения составляет более 200 Ом, замените модуль управления (ECU) SRS, в противном случае замените главный жгут электропроводки SRS.
Диагностический код 15
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Подсоедините разъем 1F диагностического жгута F к разъему АВ9.
6. Рассоедините центральный разъем АВ6 жгута электропроводки модуля управления SRS и подключите его к разъему 1I диагностического жгута I .
7. Подсоедините отрицательный провод к батарее и включите зажигание (двигатель не запускайте). 8. Измерьте напряжение между массой и клеммой № 4 разъема 2I жгута I. Если результат измерения составляет менее 1 В, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 9. Измерьте напряжение между массой и клеммой № 1 разъема 2I жгута I. Если результат измерения составляет менее 1 В, замените модуль управления (ECU) SRS, в противном случае замените главный жгут электропроводки SRS.
Диагностический код 16
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8. 4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Подсоедините разъем 1F диагностического жгута F к разъему АВ9.

6. Рассоедините центральный разъем АВ6 жгута электропроводки модуля управления SRS и подключите его к разъему 1I диагностического жгута I.
7. Подсоедините отрицательный провод к батарее и включите зажигание (двигатель не запускайте). 8. Измерьте напряжение между массой и клеммой № 2 разъема 2I жгута I. Если результат измерения составляет менее 1 В, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 9. Измерьте напряжение между массой и клеммой № 5 разъема 2I жгута I. Если результат измерения составляет менее 1 В, замените модуль управления (ECU) SRS, в противном случае замените главный жгут электропроводки SRS.
Диагностический код 21

Присутствие в памяти модуля самодиагностики кода 21 свидетельствует о необходимости выполнения замены ECU SRS (см. Раздел Снятие и установка компонентов SRS).

Диагностический код 22

При высвечивании кода 22 следует произвести замену ECU SRS, а также датчиков и модулей передних подушек безопасности (см. Раздел Снятие и установка компонентов SRS).

Диагностический код 23

1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Рассоедините разъемы АВ6, АВ17 и АВ18 электропроводки SRS и внимательно изучите состояние их корпусов и контактных клемм. Вышедшие из строя разъемы подлежат замене. Если разъемы в порядке, замените ECU SRS (см. Раздел Снятие и установка компонентов SRS).

Диагностический код 24
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Рассоедините центральный разъем АВ6 жгута электропроводки модуля управления SRS и подключите его к разъему 1I диагностического жгута I.
6. Подсоедините отрицательный провод к батарее и включите зажигание (двигатель не запускайте). 7. Измерьте напряжение между массой и клеммой № 3 разъема 2I жгута I. Если результат измерения составляет менее 1 В, переходите к следующему этапу проверки, в противном случае замените ECU SRS (см. Раздел Снятие и установка компонентов SRS). 8. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

9. Отсоедините разъем АВ1 от разъема В31 жгута кузовной электропроводки в нижней части левой передней стойки.
10. Подсоедините разъем АВ1 к разъему А2 диагностического жгута А.
11. Измерьте сопротивление между клеммой № 9 разъема 5А жгута А и клеммой № 3 разъема 2I жгута I. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 12. Измерьте сопротивление между массой и клеммой № 9 разъема 5А жгута А. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки. 13. Измерьте сопротивление между массой и клеммой № 3 разъема 2I жгута I. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки.
14. Удостоверьтесь, что зажигание выключено. Снимите предохранитель № 11 и изучите его состояние. Замените перегоревший предохранитель, - если он вновь сразу же выходит строя, проверьте электропроводку цепи кузовной электропроводки на наличие признаков короткого замыкания, произведите необходимый восстановительный ремонт. Если предохранитель в порядке, устраните обрыв в жгуте.
Диагностический код 25
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Рассоедините центральный разъем АВ6 жгута электропроводки модуля управления SRS и подключите его к разъему 1I диагностического жгута I.
6. Подсоедините отрицательный провод к батарее и включите зажигание (двигатель не запускайте). 7. Измерьте напряжение между массой и клеммой № 6 разъема 2I жгута I. Если результат измерения составляет менее 1 В, переходите к следующему этапу проверки, в противном случае замените ECU SRS (см. Раздел Снятие и установка компонентов SRS). 8. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

9. Отсоедините разъем АВ1 от разъема В31 жгута кузовной электропроводки в нижней части левой передней стойки.
10. Подсоедините разъем АВ1 к разъему А2 диагностического жгута А.
11. Измерьте сопротивление между клеммой № 6 разъема 5А жгута А и клеммой № 6 разъема 2I жгута I. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 12. Измерьте сопротивление между массой и клеммой № 1 разъема 5А жгута А. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки. 13. Измерьте сопротивление между массой и клеммой № 6 разъема 2I жгута I. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки.
14. Удостоверьтесь, что зажигание выключено. Снимите предохранитель № 6 и изучите его состояние. Замените перегоревший предохранитель, - если он вновь сразу же выходит строя, проверьте электропроводку цепи кузовной электропроводки на наличие признаков короткого замыкания, произведите необходимый восстановительный ремонт. Если предохранитель в порядке, устраните обрыв в жгуте.
Диагностический код 31
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования).
2. Рассоедините центральный разъем АВ6 жгута электропроводки модуля управления SRS и подключите его к разъему 1I диагностического жгута I.
3. Измерьте сопротивление между клеммами №№ 2 и 4 разъема 3I жгута I. Если результат измерения выходит за пределы диапазона 750 ÷ 1000 Ом, переходите к следующему этапу проверки, в противном случае замените ECU SRS. 4. Измерьте сопротивление между массой и клеммой № 2 разъема 3I жгута I. Если результат измерения составляет менее 10 кОм , переходите к следующему этапу проверки, в противном случае замените ECU SRS. 5. Измерьте сопротивление между массой и клеммой № 4 разъема 3I жгута I. Если результат измерения составляет менее 10 кОм, переходите к следующему этапу проверки, в противном случае замените ECU SRS. 6. Отсоедините разъем АВ14 от разъема АВ15 и подсоедините к нему разъем 2F диагностического жгута F. 7. Измерьте сопротивление между клеммой № 6 разъема 3F жгута F и клеммой № 2 разъема 3I жгута I. Если результат измерения составляет менее 10 кОм , переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 8. Измерьте сопротивление между клеммой № 5 разъема 3F жгута F и клеммой № 4 разъема 3I жгута I. Если результат измерения составляет менее 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 9. Измерьте сопротивление между массой и клеммой № 2 разъема 3I жгута I. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки. 10. Измерьте сопротивление между массой и клеммой № 4 разъема 3I жгута I. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки. 11. Подсоедините разъем 1F жгута F к разъему АВ15.
12. Рассоедините разъем АВ16 электропроводки датчика правой передней подушки безопасности и подсоедините к нему разъем 1Н диагностического жгута Н.
13. Измерьте сопротивление между клеммой № 3 разъема 3F жгута F и клеммой № 5 разъема 3Н жгута Н. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку датчика правой передней подушки безопасности. 14. Измерьте сопротивление между клеммой № 4 разъема 3F жгута F и клеммой № 6 разъема 3Н жгута Н. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку датчика правой передней подушки безопасности. 15. Измерьте сопротивление между массой и клеммой № 3 разъема 3F жгута F. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените электропроводку датчика правой передней подушки безопасности. 16. Измерьте сопротивление между массой и клеммой № 4 разъема 3F жгута F. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените электропроводку датчика правой передней подушки безопасности. 17. Измерьте сопротивление между клеммами №№ 3 и 4 разъема 3Н жгута Н. Если результат измерения составляет 750 ÷ 1000 кОм, переходите к следующему этапу проверки, в противном случае замените датчик правой передней подушки безопасности (см. Раздел Снятие и установка компонентов SRS). 18. Измерьте сопротивление между массой и клеммой № 3 разъема 3Н жгута Н. Если результат измерения составляет менее 10 кОм, переходите к следующему этапу проверки, в противном случае замените датчик правой передней подушки безопасности (см. Раздел Снятие и установка компонентов SRS). 19. Измерьте сопротивление между массой и клеммой № 4 разъема 3Н жгута Н. Если результат измерения составляет менее 10 кОм, очистите память блока самодиагностики (см. выше) и повторите проверку, в противном случае замените датчик правой передней подушки безопасности (см. Раздел Снятие и установка компонентов SRS).
Диагностический код 32
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования).
2. Рассоедините центральный разъем АВ6 жгута электропроводки модуля управления SRS и подключите его к разъему 1I диагностического жгута I. 3. Измерьте сопротивление между клеммами №№ 1 и 3 разъема 3I жгута I. Если результат измерения выходит за пределы диапазона 750 ÷ 1000 Ом, переходите к следующему этапу проверки, в противном случае замените ECU SRS. 4. Измерьте сопротивление между массой и клеммой № 1 разъема 3I жгута I. Если результат измерения составляет , переходите к следующему этапу проверки, менее 10 кОм, в противном случае замените ECU SRS. 5. Измерьте сопротивление между массой и клеммой № 3 разъема 3I жгута I. Если результат измерения составляет менее 10 кОм, переходите к следующему этапу проверки, в противном случае замените ECU SRS. 6. Отсоедините разъем АВ11 от разъема АВ12 и подсоедините к нему разъем 2F диагностического жгута F.

7. Измерьте сопротивление между клеммой № 6 разъема 3F жгута F и клеммой № 3 разъема 3I жгута I. Если результат измерения составляет менее 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS.

8. Измерьте сопротивление между клеммой № 5 разъема 3F жгута F и клеммой № 1 разъема 3I жгута I. Если результат измерения составляет менее 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS. 9. Измерьте сопротивление между массой и клеммой № 3 разъема 3I жгута I. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки. 10. Измерьте сопротивление между массой и клеммой № 1 разъема 3I жгута I. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки. 11. Подсоедините разъем 1F жгута F к разъему АВ12.
12. Рассоедините разъем АВ13 электропроводки датчика левой передней подушки безопасности и подсоедините к нему разъем 1Н диагностического жгута Н.
13. Измерьте сопротивление между клеммой № 3 разъема 3F жгута F и клеммой № 5 разъема 3Н жгута Н. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку датчика левой передней подушки безопасности. 14. Измерьте сопротивление между клеммой № 4 разъема 3F жгута F и клеммой № 6 разъема 3Н жгута Н. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку датчика левой передней подушки безопасности. 15. Измерьте сопротивление между массой и клеммой № 3 разъема 3F жгута F. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените электропроводку датчика левой передней подушки безопасности. 16. Измерьте сопротивление между массой и клеммой № 4 разъема 3F жгута F. Если результат измерения составляет более 10 кОм, переходите к следующему этапу проверки, в противном случае замените электропроводку датчика левой передней подушки безопасности. 17. Измерьте сопротивление между клеммами №№ 3 и 4 разъема 3Н жгута Н. Если результат измерения составляет 750 ÷ 1000 кОм, переходите к следующему этапу проверки, в противном случае замените датчик левой передней подушки безопасности (см. Раздел Снятие и установка компонентов SRS). 18. Измерьте сопротивление между массой и клеммой № 3 разъема 3Н жгута Н. Если результат измерения составляет менее 10 кОм, переходите к следующему этапу проверки, в противном случае замените датчик левой передней подушки безопасности (см. Раздел Снятие и установка компонентов SRS). 19. Измерьте сопротивление между массой и клеммой № 4 разъема 3Н жгута Н. Если результат измерения составляет менее 10 кОм, очистите память блока самодиагностики (см. выше) и повторите проверку, в противном случае замените датчик левой передней подушки безопасности (см. Раздел Снятие и установка компонентов SRS).
Диагностический код 41
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Рассоедините расположенные под правым передним сиденьем разъемы АВ24 и АВ25 электропроводки модуля правой боковой подушки безопасности. Подключите к разъему А24 разъем 1F диагностического жгута F.
6. Подключите к разъему 2F жгута F резистор подушки безопасности. 7. Подсоедините отрицательный провод к батарее и включите зажигание. Если контрольная лампа SRS/AIR BAG не загорится, переходите к следующему этапу проверки, в противном случае замените модуль правой боковой подушки безопасности.

8. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

9. Отсоедините от жгута F резистор подушки безопасности. 10. Рассоедините разъем АВ18 (правый) жгута электропроводки ECU SRS и подсоедините к нему разъем 1I диагностического жгута I.

11. Измерьте сопротивление между клеммой № 3 разъема 3F жгута F и клеммой № 7 разъема 3I жгута I. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности SRS.

12. Измерьте сопротивление между клеммой № 4 разъема 3F жгута F и клеммой № 9 разъема 3I жгута I. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности SRS. 13. Измерьте сопротивление между клеммами №№ 7 и 9 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности SRS. 14. Измерьте сопротивление между клеммами №№ 3 и 4 разъема 3F жгута F. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности SRS. 15. Измерьте сопротивление между массой и клеммой № 3 разъема 3F жгута F. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности. 16. Измерьте сопротивление между массой и клеммой № 4 разъема 3F жгута F. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности. 17. Измерьте сопротивление между массой и клеммой № 7 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности. 18. Измерьте сопротивление между массой и клеммой № 9 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, замените ECU SRS, в противном случае замените электропроводку правой боковой подушки безопасности.
Диагностический код 42
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Рассоедините расположенные под левым передним сиденьем разъемы АВ19 и АВ20 электропроводки модуля левой боковой подушки безопасности. Подключите к разъему А19 разъем 1F диагностического жгута F.
6. Подключите к разъему 2F жгута F резистор подушки безопасности. 7. Подсоедините отрицательный провод к батарее и включите зажигание. Если контрольная лампа SRS/AIR BAG не загорится, переходите к следующему этапу проверки, в противном случае замените модуль левой боковой подушки безопасности.

8. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

9. Отсоедините от жгута F резистор подушки безопасности. 10. Рассоедините разъем АВ17 (левый) жгута электропроводки ECU SRS и подсоедините к нему разъем 1I диагностического жгута I.

11. Измерьте сопротивление между клеммой № 3 разъема 3F жгута F и клеммой № 12 разъема 3I жгута I. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности SRS.

12. Измерьте сопротивление между клеммой № 4 разъема 3F жгута F и клеммой № 10 разъема 3I жгута I. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности SRS. 13. Измерьте сопротивление между клеммами №№ 10 и 12 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности SRS. 14. Измерьте сопротивление между клеммами №№ 3 и 4 разъема 3F жгута F. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности SRS. 15. Измерьте сопротивление между массой и клеммой № 3 разъема 3F жгута F. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности. 16. Измерьте сопротивление между массой и клеммой № 4 разъема 3F жгута F. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности. 17. Измерьте сопротивление между массой и клеммой № 10 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности. 18. Измерьте сопротивление между массой и клеммой № 12 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, замените ECU SRS, в противном случае замените электропроводку левой боковой подушки безопасности.
Диагностический код 45
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Рассоедините расположенные под правым передним сиденьем разъемы АВ24 и АВ25 электропроводки модуля правой боковой подушки безопасности. Подключите к разъему А24 разъем 1F диагностического жгута F.
6. Подключите к разъему 2F жгута F резистор подушки безопасности. 7. Подсоедините отрицательный провод к батарее и включите зажигание. Если контрольная лампа SRS/AIR BAG не загорится, переходите к следующему этапу проверки, в противном случае замените модуль правой боковой подушки безопасности.

8. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

9. Отсоедините от жгута F резистор подушки безопасности. 10. Рассоедините разъем АВ18 (правый) жгута электропроводки ECU SRS и подсоедините к нему разъем 1I диагностического жгута I. 11. Подсоедините отрицательный провод к батарее и включите зажигание (двигатель не запускайте).

12. Измерьте напряжение между массой и клеммой № 7 разъема 3I жгута I. Если результат измерения составляет более 1 В, переходите к следующему этапу проверки, в противном случае замените ECU ABS (см. Раздел Снятие и установка компонентов SRS).

13. Измерьте напряжение между массой и клеммой № 8 [9 ?] разъема 3I жгута I. Если результат измерения составляет менее 1 В, замените ECU ABS (см. Раздел Снятие и установка компонентов SRS) в противном случае замените электропроводку модуля правой боковой подушки безопасности.
Диагностический код 46
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8.

4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Рассоедините расположенные под левым передним сиденьем разъемы АВ19 и АВ20 электропроводки модуля левой боковой подушки безопасности. Подключите к разъему А19 разъем 1F диагностического жгута F.
6. Подключите к разъему 2F жгута F резистор подушки безопасности. 7. Подсоедините отрицательный провод к батарее и включите зажигание. Если контрольная лампа SRS/AIR BAG не загорится, переходите к следующему этапу проверки, в противном случае замените модуль левой боковой подушки безопасности.

8. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

9. Отсоедините от жгута F резистор подушки безопасности. 10. Рассоедините разъем АВ17 (левый) жгута электропроводки ECU SRS и подсоедините к нему разъем 1I диагностического жгута I. 11. Подсоедините отрицательный провод к батарее и включите зажигание (двигатель не запускайте).

12. Измерьте напряжение между массой и клеммой № 10 разъема 3I жгута I. Если результат измерения составляет более 1 В, переходите к следующему этапу проверки, в противном случае замените ECU ABS (см. Раздел Снятие и установка компонентов SRS).

13. Измерьте напряжение между массой и клеммой № 12 разъема 3I жгута I. Если результат измерения составляет менее 1 В, замените ECU ABS (см. Раздел Снятие и установка компонентов SRS) в противном случае замените электропроводку модуля левой боковой подушки безопасности.
Диагностический код 51
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8. 4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Рассоедините разъем АВ18 (правый) жгута электропроводки ECU SRS и подсоедините к нему разъем 1I диагностического жгута I.

6. Рассоедините разъем АВ28 электропроводки датчика правой боковой подушки безопасности и подсоедините к нему разъем 1G диагностического жгута G.
7. Измерьте сопротивление между клеммой № 17 разъема 3I жгута I и клеммой № 2 разъема 3G жгута G. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности SRS. 8. Измерьте сопротивление между клеммой № 19 разъема 3I жгута I и клеммой № 5 разъема 3G жгута G. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности SRS. 9. Измерьте сопротивление между клеммой № 18 разъема 3I жгута I и клеммой № 1 разъема 3G жгута G. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности SRS. 10. Измерьте сопротивление между клеммой № 20 разъема 3I жгута I и клеммой № 4 разъема 3G жгута G. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности SRS. 11. Измерьте сопротивление между массой и клеммой № 2 разъема 3G жгута G. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности. 12. Измерьте сопротивление между массой и клеммой № 5 разъема 3G жгута G. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности. 13. Измерьте сопротивление между массой и клеммой № 17 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку правой боковой подушки безопасности. 14. Измерьте сопротивление между массой и клеммой № 19 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, замените датчик правой боковой подушки безопасности (см. Раздел Снятие и установка компонентов SRS) в противном случае замените электропроводку правой боковой подушки безопасности.
Диагностический код 52
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите нижнюю секцию отделки панели приборов. 3. Рассоедините контактные разъемы электропроводки кабельного барабана АВ3 и АВ8. 4. Снимите вещевой ящик и рассоедините контактные разъемы АВ9 и АВ10 модуля пассажирской подушки безопасности.

5. Рассоедините разъем АВ17 (левый) жгута электропроводки ECU SRS и подсоедините к нему разъем 1I диагностического жгута I.

6. Рассоедините разъем АВ23 электропроводки датчика левой боковой подушки безопасности и подсоедините к нему разъем 1G диагностического жгута G.
7. Измерьте сопротивление между клеммой № 14 разъема 3I жгута I и клеммой № 5 разъема 3G жгута G. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности SRS. 8. Измерьте сопротивление между клеммой № 16 разъема 3I жгута I и клеммой № 2 разъема 3G жгута G. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности SRS. 9. Измерьте сопротивление между клеммой № 15 разъема 3I жгута I и клеммой № 1 разъема 3G жгута G. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности SRS. 10. Измерьте сопротивление между клеммой № 5 разъема 3I жгута I и клеммой № 4 разъема 3G жгута G. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности SRS. 11. Измерьте сопротивление между массой и клеммой № 2 разъема 3G жгута G. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности. 12. Измерьте сопротивление между массой и клеммой № 5 разъема 3G жгута G. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности. 13. Измерьте сопротивление между массой и клеммой № 14 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, переходите к следующему этапу проверки, в противном случае замените электропроводку левой боковой подушки безопасности. 14. Измерьте сопротивление между массой и клеммой № 16 разъема 3I жгута I. Если результат измерения составляет более 10 МОм, замените датчик левой боковой подушки безопасности (см. Раздел Снятие и установка компонентов SRS) в противном случае замените электропроводку левой боковой подушки безопасности.
Диагностический код 53

Присутствие в памяти блока самодиагностики кода 53 означает необходимость выполнения замены датчика правой боковой подушки безопасности (см. Раздел Снятие и установка компонентов SRS). В заключение не забудьте активировать SRS и проверить исправность ее функционирования по срабатыванию контрольной лампы (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования).

Диагностический код 54

Присутствие в памяти блока самодиагностики кода 54 означает необходимость выполнения замены датчика левой боковой подушки безопасности (см. Раздел Снятие и установка компонентов SRS). В заключение не забудьте активировать SRS и проверить исправность ее функционирования по срабатыванию контрольной лампы (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования).

Диагностический код 55

Присутствие в памяти блока самодиагностики кода 55 означает необходимость выполнения замены спинки переднего сиденья со сработавшим модулем боковой подушки безопасности. В заключение не забудьте активировать SRS и проверить исправность ее функционирования по срабатыванию контрольной лампы (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования).

Контрольная лампа SRS не отключается

1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования). 2. Снимите переднюю накладку порога водительской двери. 3. Проверьте надежность фиксации контактных разъемов АВ1 и В31. В случае необходимости произведите соответствующие исправления. 4. Удостоверившись, что контакт в данных разъемах не нарушен, переходите к следующему этапу проверки. 5. Удостоверьтесь, что зажигание выключено. Подсоедините к кузовному разъему В31 разъем 1А диагностического жгута А (см. выше). 6. Подсоедините отрицательный провод к батарее и включите зажигание (двигатель не запускайте). 7. Соедините между собой разъемы 3А и 4А жгута А, - если контрольная лампа SRS не срабатывает, переходите к следующему этапу проверки, в противном случае, пропустите выполнение процедуры изложенной выше. 8. Внимательно изучите состояние кузовной электропроводки (включая цепи осветительных приборов). Устраните выявленные неполадки. Если электропроводка в порядке, замените контрольную лампу SRS и/или печатную плату комбинации приборов. 9. Рассоедините центральный контактный разъем АВ6 ECU SRS и внимательно изучите его состояние. Устраните выявленные неполадки. Если разъем в порядке, переходите к следующему этапу проверки.

10. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

11. Восстановите исходное подключение разъемов АВ1 и В31 под передней накладкой порога водительской двери. 12. Снимите нижнюю секцию отделки панели приборов и рассоедините разъемы АВ3 и АВ8 кабельного барабана. 13. Рассоедините центральный разъем АВ6 ECU SRS и подключите к нему разъем 1I диагностического жгута I (см. выше). 14. Подсоедините отрицательный провод к батарее и включите зажигание.

15. Соедините между собой разъемы 4I и 5I жгута I, при срабатывании контрольной лампы SRS переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS.

После устранения проблемы не забудьте рассоединить разъемы 4I и 5I.

16. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

17. Рассоедините разъем АВ1 от В31 и подключите к нему разъем 1А диагностического жгута А. 18. Измерьте сопротивление между массой и клеммой № 17 разъема 5А жгута А. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае проверьте качество кузовного заземления. 19. Измерьте сопротивление между массой и клеммой № 18 разъема 5А жгута А. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае проверьте качество кузовного заземления. 20. Восстановите исходное подключение разъемов АВ1 и В31 под передней накладкой порога водительской двери. 21. Рассоедините разъем АВ6 ECU SRS и подключите к нему разъем 1I диагностического жгута I.

22. Измерьте сопротивление между массой и клеммой № 9 разъема 2I жгута I. Если результат измерения составляет менее 10 Ом, переходите к следующему этапу проверки, в противном случае замените главный жгут электропроводки SRS.

23. Измерьте сопротивление между массой и клеммой № 10 разъема 2I жгута I. Если результат измерения составляет менее 10 Ом, замените ECU SRS, в противном случае замените главный жгут электропроводки SRS.
Контрольная лампа SRS не включается
1. Отключите SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования).
2. Проверьте состояние предохранителя № 5 в главном монтажном блоке перегоревший предохранитель замените.
3. Включите зажигание (двигатель не запускайте) и проверьте исправность функционирования прочих контрольных ламп комбинации приборов. Если все лампы, кроме лампы SRS функционируют нормально, переходите к следующему этапу проверки, в противном случае проверьте состояние электропроводки печатной платы, произведите необходимый восстановительный ремонт. 4. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

5. Отсоедините 7-контактный желтого цвета разъем АВ1 от разъема В31 кузовного жгута электропроводки (разъемы находятся под передней накладкой порога водительской двери ). 6. Подсоедините отрицательный провод к батарее и включите зажигание, - при исправном срабатывании контрольной лампы переходите к следующему этапу проверки, в противном случае замените лампу/печатную плату комбинации приборов. Выключите зажигание и отсоедините отрицательный провод от батареи.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие! Выждите не менее 20 секунд.

7. Восстановите исходное подключение разъемов АВ1 и В31 под передней накладкой порога водительской двери. 8. Снимите нижнюю секцию отделки панели приборов и рассоедините разъемы АВ3 и АВ8 кабельного барабана. 9. Рассоедините центральный разъем АВ6 ECU SRS. 10. Подсоедините отрицательный провод к батарее и включите зажигание, - при исправном срабатывании контрольной лампы замените ECU SRS, в противном случае замените главный жгут электропроводки SRS.

11. Восстановите исходное подключение всех компонентов и активируйте SRS (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования).

Контрольная лампа SRS высвечивает ложный диагностический код
1. Визуально оцените состояние компонентов цепи, соответствующей высвечиваемому ложному коду (см. таблицу кодов выше). Особое внимание обращайте внимание на надежность затягивания крепежа компонентов и фиксации контактных разъемов. Дефектные компоненты замените. 2. Подергайте подозреваемые компоненты и их контактные разъемы на предмет выявления нестабильного нарушения контактов. Для проверки модуля водительской подушки безопасности и кабельного барабана повращайте рулевое колесо.

Не следует одновременно проверять ECU SRS и датчики передних подушек безопасности! Замените дефектные компоненты.

3. Для проверки влагозащищенности компонентов SRS слегка разбрызгайте воду на кузовные поверхности в районе их установки (старайтесь не допускать прямого попадания влаги на компоненты SRS). 4. Осмотрите салон на наличие признаков попадания влаги. 5. Подергайте предохранитель № 11 (см. выше), ECU SRS, кузовной и главный жгуты электропроводки. Замените выявленные дефектные компоненты. 6. Повторите проверку влагозащищенности компонентов.

7. Проверьте исправность срабатывания контрольной лампы SRS при включении зажигания (см. Раздел Система дополнительной безопасности (SRS) - устройство и принцип функционирования).

automn.ru

7.2.3 Система бортовой самодиагностики OBD - общая информация

Система бортовой самодиагностики OBD - общая информация

Приведенный ниже материал носит лишь описательный характер и не привязан ни к какой конкретной марке или модели автомобиля.

Сведения о диагностических приборах

Проверка исправности функционирования компонентов систем впрыска и снижения токсичности отработавших газов производится при помощи универсального цифрового измерителя (мультиметра). Использование цифрового измерителя предпочтительно по нескольким причинам. Во-первых, по аналоговым приборам достаточно сложно (порой, невозможно), определить результат показания с точностью до сотых и тысячных долях, в то время как при обследовании контуров, включающих в свой состав электронные компоненты, такая точность приобретает особое значение. Второй, не менее важной, причиной является тот факт, что внутренний контур цифрового мультиметра, имеет достаточно высокий импеданс (внутреннее сопротивление прибора составляет 10 миллионов Ом). Так как вольтметр подсоединяется к проверяемой цепи параллельно, точность измерения тем выше, чем меньший паразитный ток будет проходить через собственно прибор. Данный фактор не является существенным при измерении относительно высоких значений напряжения (9—12 В), однако становится определяющим при диагностике выдающих низковольтные сигналы элементов, таких, как, например, лямбда-зонд, где речь идет об измерении долей вольта.

Наиболее удобными приборами для диагностики систем управления двигателем современных моделей автомобилей являются ручные считыватели сканерного типа. Сканеры первого поколения служат для считывания кодов неисправностей систем OBD-I. Перед применением считыватель следует проверить на соответствие модели и году выпуска проверяемого автомобиля. Некоторые сканеры являются многофункциональными за счет возможности смены картриджа в зависимости от модели диагностируемого автомобиля (Ford, GM, Chrysler и т.п.), другие привязаны к требованиям региональных властей и предназначены для использования в определенных районах мира (Европа, Азия, США и т.д.).

В последнее время, абсолютно незаменимыми при диагностике систем управления двигателем современных автомобилей стали такие считывающие приборы, как ручные сканеры типа Actron Scantool или AutoXray XP240.

Диагностический сканер New Generation Star (NGS) (широкое применение получили также сканеры FDS 2000, Bosch FSA 560 [www.bosch.de] и KTS 500 [0 684 400 500]).

С введением в производство отвечающей требованиям последних законодательств по охране окружающей среды системы бортовой диагностики второго поколения (OBD-II) начали выпускаться считыватели специальной конструкции. Некоторые производители наладили выпуск сканеров, предназначенных для использования механиками-любителями в домашних условиях, - спрашивайте в магазинах автомобильных аксессуаров.

Еще одним очень удобным диагностическим прибором является дорогостоящий специализированный диагностический компьютер типа ADC2000 фирмы Launch HiTech), либо обычный персональный компьютер в комплекте со специальным кабелем и адаптером (комплект 1 687 001 439).

Адаптер предназначен для согласования диагностических линий К и L (см. иллюстрацию Диагностический разъем системы OBD II, - при подключении используйте стандартный кабель OBD-II J1962) с СОМ-портом компьютера.

Некоторые сканеры помимо обычных диагностических операций позволяют при подсоединении к персональному компьютеру распечатывать хранящуюся в памяти модуля управления принципиальные схемы электрооборудования (если таковые заложены), программировать противоугонную систему, наблюдать сигналы в цепях предохранителя в реальном масштабе времени.

Бесплатную версию броузера OBD II можно скачать с сайта составителей настоящего Руководства arus.spb.ru.

В принципе, считывание записанных в память системы самодиагностики кодов неисправностей может быть произведено при помощи контрольной лампы отказов MIL и провода-перемычки, устанавливаемого между конкретными клеммами 16-контактного диагностического разъема.

Общее описание системы OBD

Диагностический разъем системы OBD II, - при подключении используйте стандартный кабель OBD-II J1962

На оборудованных системой OBD II модулях на установленной под капотом шильде должна присутствовать запись «OBD II compliant», а диагностический разъем DLC должен быть 16-контактным. Как правило, системой OBD II обязательно оснащаются модели, предназначенные для североамериканского рынка, начиная с 1996 г. выпуска, а также европейские модели, начиная с 2000 г. выпуска.

В состав системы OBD входят несколько диагностических устройств, производящих мониторинг отдельных параметров систем снижения токсичности и фиксирующих выявленные отказы в памяти бортового процессора в виде индивидуальных кодов неисправностей. Система производит также проверку датчиков и исполнительных устройств, контролирует эксплуатационные циклы транспортного средства, обеспечивает возможность замораживания параметров и очистки блока памяти.

Все описываемые в настоящем Руководстве модели оборудованы системой бортовой диагностики второго поколения (OBD-II). Основным элементом системы является бортовой процессор, чаще называемый электронным модулем управления (ECM). ECM является мозгом системы управления двигателем. Исходные данные поступают на модуль от различных информационных датчиков и других электронных компонентов (выключателей, реле и т.д.). На основании анализа поступающих от информационных датчиков данных и в соответствии с заложенными в память процессора базовыми параметрами, ECM вырабатывает команды на срабатывание различных управляющих реле и исполнительных устройств, осуществляя тем самым корректировку рабочих параметров двигателя и обеспечивая максимальную эффективность его отдачи при минимальном расходе топлива. Считывание данных памяти процессора OBD-II производится при помощи специального сканера, подключаемого к 16-контактному диагностическому разъему считывания базы данных (DLC), расположенному под декоративной крышкой на центральной консоли впереди рычага привода стояночного тормоза (см. иллюстрации Диагностический разъем DLC расположен в центральной консоли впереди рычага стояночного тормоза под декоративной крышкой , Местоположение разъема DLC в консоли и Диагностический разъем системы OBD II, - при подключении используйте стандартный кабель OBD-II J1962).

В принципе, считывание записанных в память системы самодиагностики кодов неисправностей может быть произведено при помощи провода-перемычки, устанавливаемого между конкретными клеммами 16-контактного диагностического разъема.

На обслуживание компонентов систем управления двигателем/ снижения токсичности отработавших газов распространяются особые гарантийные обязательства с продленным сроком действия. Не следует предпринимать попыток самостоятельного выполнения диагностики отказов ECM или замены компонентов системы, до выхода сроков данных обязательств, - обращайтесь к специалистам фирменных станций техобслуживания компании Opel.

Информационные датчики (в зависимости от комплектации автомобиля)

Кислородные датчики (лямбда-зонды)

Датчик вырабатывает сигнал, амплитуда которого зависит от разницы содержания кислорода (О2) в отработавших газах двигателя и наружном воздухе.

Датчик положения коленчатого вала (СКР)

Датчик информирует ECM о положении коленчатого вала и оборотах двигателя. Данная информация используется процессором при определении моментов впрыска топлива и установке угла опережения зажигания.

Датчик положения поршней (CYP)

На основании анализа поступающих от датчика сигналов ECM вычисляет положение поршня первого цилиндра и использует данную информацию при определении моментов и последовательности впрыска топлива в камеры сгорания двигателя.

Датчик ВМТ (TDC)

Вырабатываемые датчиком сигналы используются ECM при определении установок угла опережения зажигания в момент запуска двигателя.

Датчик температуры охлаждающей жидкости двигателя (ЕСТ)

На основании поступающей от датчика информации ЕСМ/ осуществляет необходимые корректировки состава воздушно-топливной смеси и угла опережения зажигания, а также контролирует работу системы EGR.

Датчик температуры всасываемого воздуха (IAT)

ECM использует поступающую от датчика IAT информацию при корректировках потока топлива, установок угла опережения зажигания и управлении функционированием системы EGR.

Датчик положения дроссельной заслонки (TPS)

Датчик расположен на корпусе дросселя и соединен с осью дроссельной заслонки. По амплитуде выдаваемого TPS сигнала ECM определяет угол открывания дроссельной заслонки (управляется водителем от педали газа) и соответствующим образом корректирует подачу топлива во впускные порты камер сгорания. Отказ датчика, либо ослабление его крепления приводит к перебоям впрыска и нарушениям стабильности оборотов холостого хода.

Датчик абсолютного давления в трубопроводе (МАР)

Датчик контролирует вариации глубины разрежения во впускном трубопроводе, связанные с изменениями оборотов коленчатого вала и нагрузки на двигатель и преобразует получаемую информацию в амплитудный сигнал. ECM использует поставляемую датчиками МАР и IAT информацию при тонких корректировках подачи топлива.

Датчик атмосферного давления (BARO)

Датчик вырабатывает амплитудный сигнал, пропорциональный изменениям атмосферного давления, который используется ECM при определении продолжительности моментов впрыска топлива. Датчик встроен в модуль ECM и обслуживанию в индивидуальном порядке не подлежит.

Датчик детонации (KS)

Датчик реагирует на изменение уровня вибраций, связанных с детонациями в двигателе. На основании поступающей от датчик информации ECM осуществляет соответствующую корректировку угла опережения зажигания.

Датчик скорости движения автомобиля (VSS)

Как следует из его названия, датчик информирует процессор о текущей скорости движения автомобиля.

Датчик величины открывания клапана EGR

Датчик оповещает ECM о величине смещения плунжера клапана EGR. Полученная информация используется затем процессором при управлении функционированием системы рециркуляции отработавших газов.

Датчик давления в топливном баке

Датчик является составным элементом системы улавливания топливных испарений (EVAP) и служит для отслеживания давления паров бензина в баке. На основании поступающей от датчика информации ECM выдает команды на срабатывание электромагнитных клапанов продувки системы.

Датчик-выключатель давления системы гидроусиления руля (PSP)

На основании поступающей от датчика-выключателя PSP информации ECM обеспечивает повышение оборотов холостого хода за счет срабатывания датчика системы стабилизации оборотов холостого хода (IAC) с целью компенсации возрастающих нагрузок на двигатель, связанных с функционированием рулевого гидроусилителя при совершении маневров.

Трансмиссионные датчики

В дополнение к данным, поступающим от VSS, ECM получает также информацию от датчиков помещенных внутрь коробки передач, либо подсоединенных к ней. К числу таких датчиков относятся:

  • датчик оборотов вторичного (коренного) вала
  • датчик оборотов промежуточного вала.

Датчик-выключатель управления включением муфты сцепления кондиционера воздуха

При подаче питания от батареи к электромагнитному клапану компрессора К/В соответствующий информационный сигнал поступает на ECM, который расценивает его как свидетельство возрастания нагрузки на двигатель и соответствующим образом корректирует обороты его холостого хода.

Исполнительные устройства

Реле топливного насоса

ECM производит активацию реле топливного насоса при поворачивании ключа зажигания в положение START или RUN. При включении зажигания активация реле обеспечивает подъем давления в системе питания. Более подробная информация по главному реле приведена в Главе Системы питания и выпуска.

Инжектор(ы) топлива

ECM обеспечивает индивидуальное включение каждого из инжекторов в соответствии с установленным порядком зажигания. Кроме того, модуль контролирует продолжительность открывания инжекторов, определяемую шириной управляющего импульса, измеряемой в миллисекундах и определяющей количество впрыскиваемого в цилиндр топлива. Более подробная информация по принципу функционирования системы впрыска, замене и обслуживанию инжекторов приведена в Главе Системы питания и выпуска.

Модуль управления зажиганием (ICM)

Модуль управляет функционированием катушки зажигания, определяя требуемое базовое опережение на основании вырабатываемых ECM команд.

Клапан стабилизации оборотов холостого хода (IAC)

Клапан IAC осуществляет дозировку количества воздуха, перепускаемого в обход дроссельной заслонки, когда последняя закрыта, либо занимает положение холостого хода. Открыванием клапана и формированием результирующего воздушного потока управляет ECM.

Электромагнитный клапан продувки угольного адсорбера

Клапан является составным элементом системы улавливания топливных испарений (EVAP) и, срабатывая по команде ECM, осуществляет выпуск скопившихся в адсорбере паров топлива во впускной трубопровод с целью сжигания их в процессе нормального функционирования двигателя.

Электромагнит управления продувкой угольного адсорбера

Электромагнит используется ECM при проверке системой OBD-II исправности функционирования системы EVAP.

Считывание кодов неисправностей и очистка памяти процессора

При выявлении неисправности, повторяющейся подряд в дух поездках, ECM выдает команду на включение вмонтированной в приборный щиток контрольной лампы «Проверьте двигатель», называемой также индикатором отказов (MIL). Одновременно прибор управления переключается на аварийный режим. Лампа будет продолжать гореть до тех пор, пока память системы самодиагностики не будет очищена от занесенных в нее кодов выявленных неисправностей (см. ниже).

Считывание кодов с помощью сканера

Считывание кодов неисправностей производится путем подключения специального считывателя (см. выше) к 16-контактному диагностическому разъему DLC (см. иллюстрации Диагностический разъем DLC расположен в центральной консоли впереди рычага стояночного тормоза под декоративной крышкой , Местоположение разъема DLC в консоли и Диагностический разъем системы OBD II, - при подключении используйте стандартный кабель OBD-II J1962), - действуйте в соответствии с указаниями меню прибора. Перечень кодов приведен в Спецификациях.

Считывание кодов при помощи контрольной лампы отказов MIL

  1. Заглушите двигатель и выключите зажигание. Откройте декоративную крышку центральной консоли впереди рычага стояночного тормоза (см. иллюстрации Диагностический разъем DLC расположен в центральной консоли впереди рычага стояночного тормоза под декоративной крышкой и Местоположение разъема DLC в консоли) и замкните на массу клемму 6 (или 5) 16-контактного диагностического разъема DLC, - действуйте крайне осторожно, постарайтесь не погнуть клеммы. Следует помнить, что плохие контакты в клеммных соединениях могут явиться причиной выхода из строя модуля управления, либо нарушению исправности функционирования памяти процессора.
  1. Включите зажигание. Считывание записанных в память модуля управления диагностических кодов производится по проблескам, выдаваемым контрольной лампой отказов MIL/ «Проверьте двигатель» на приборной доске автомобиля (см. Главу Руководство по эксплуатации).
  2. Код каждой неисправности состоит из четырех групп проблесков (разрядов). Количество вспышек в группе соответствует значению разряда кода. Короткая пауза отделяет разряды кода, длинная пауза служит для разделения кодов. Высвечивание каждого кода производится подряд три раза. Коды выдаются в последовательности возрастания номеров. Нулю соответствуют 10 вспышек контрольной лампы.
  3. Высвеченный код позволяет определить лишь цепь системы, отказ которой был зафиксирован системой самодиагностики. Так, если код указывает на неисправность датчика температуры охлаждающей жидкости (ECT), не исключается также вероятность нарушения функционирования собственно модуля управления. Установить истину можно либо заменой датчика, либо путем проведения соответствующих контрольных измерений.
  4. При проверке цепи, прежде всего, отсоедините соответствующую электропроводку и проверьте состояние ее контактных соединений соединения. В случае необходимости зачистите клеммы, полностью удалив с них следы окисления.
  5. Проверьте надежность крепления кабеля у кабельного наконечника.
  6. Проверьте сопротивление подозреваемого элемента, - если номинальное сопротивление элемента невелико, следует принять во внимание такие факторы, как точность и внутреннее сопротивление измерительного прибора.
  7. Проверьте целостность проводов, идущих к модулю управления (в случае необходимости сверьтесь со схемами электрических соединений – см. Главу Бортовое электрооборудование).

При считывании кодов, указывающих на чрезмерное занижение уровня сигнала, прежде всего, необходимо удостовериться в надежности заземления соответствующего компонента. Завышение уровня сигнала чаще всего оказывается связанным с обрывом электропроводки.

Информационное содержание разрядов 5-разрядного кода вида P0380

Разряды кода вида Р 0 3 8 0 имеют следующее значение (слева направо):

1 разряд (слева)

Источник кода

P

силовой агрегат

B

кузов

С

шасси

2 разряд

Источник кода

0

стандартный SAE

1

расширенный - задаваемый производителем

3 разряд

Система

0

система в целом

1

подмешивания воздуха (air/fuel induction)

2

впрыска топлива

3

система зажигания или пропуски зажигания

4

дополнительный контроль выпуска (auxillary emission control)

5

скорость автомобиля и управление холостым ходом

6

входные и выходные сигналы блока управления

7

трансмиссия

4,5 разряды

Порядковый номер неисправности компонента или цепи (00-99)

Очистка памяти OBD II

Для очистки памяти ЕСМ выключите зажигание, извлеките перемычку, заземляющую клемму разъема DLC, и отсоедините клемму батареи не менее чем на 60 секунд, либо подключите к системе сканер и выберите в его меню функцию CLEARING CODES (Удаление кодов), - далее следуйте высвечиваемым на приборе указаниям.

Очистка памяти OBD путем отсоединения отрицательного провода от батареи, сопряжена с удалением установочных параметров двигателя и нарушением стабильности его оборотов на короткое время после первичного запуска, а также со стиранием настроек часов и радиоприемника.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие!

Во избежание повреждения ЕСМ его отключение и подключение следует производить только при выключенном зажигании!

Записанный в память код удаляется автоматически, если соответствующая неисправность не появляется в течение 20 следующих подряд друг за другом запусков двигателя (количество оборотов должно быть не ниже 450 в минуту).

Проследите, чтобы память системы была очищена перед установкой на двигатель новых компонентов систем снижения токсичности отработавших газов. Если перед запуском системы после замены вышедшего из строя информационного датчика не произвести очистку памяти отказов, ECM занесет в нее новый код неисправности. Очистка памяти позволяет процессору произвести перенастройку на новые параметры. При этом первые 15-20 минут после первичного запуска двигателя до окончания адаптации ECM, может иметь место некоторое нарушение стабильности его оборотов.

automn.ru

Mazda 626 | Система управления двигателем VG33E. Процедуры диагностики | Мазда 626

За счет применения высокоскоростного электронно-вычислительного устройства (процессора) система управления двигателем осуществляет координацию таких жизненно важных процессов, как компоновка воздушно-топливной смеси, установка и непрерывная регулировка угла опережения зажигания, функционирование систем рециркуляции отработавших газов и стабилизации оборотов холостого хода и пр. Во главу угла поставлена задача получения максимальной отдачи от двигателя в любых дорожных условиях при минимальных расходе топлива и концентрации содержания токсичных составляющих в отработавших газах.

Функциональная схема системы управления двигателем VG33E

Конструкция распределителя зажигания

Местоположение реле зажигания

Местоположение реле топливного насоса

Диаграмма проблесков контрольной лампы MIL при выдаче диагностических кодов

Поставленная перед системой задача по повышению эффективности отдачи двигателя и обеспечению максимального комфорта передвижения выполняется путем отслеживания и корректировки следующих параметров:

  • Угол опережения зажигания и время перекрывания впускных и выпускных клапанов по отношению к положениям поршней;
  • Состав воздушно-топливной смеси, подаваемой в камеры сгорания в каждом рабочем такте поршней;
  • Момент воспламенения сжатой в цилиндре в конце такта сжатия воздушно-топливной смеси;
  • Температура сгорания горючей смеси в цилиндрах, особенно при работе двигателя под нагрузкой;
  • Обороты двигателя в любых условиях функционирования.

Все перечисленные параметры контролируются и корректируются электронной системой управления двигателя, обеспечивая максимальную его отдачу при минимальных расходе топлива и эмиссии в атмосферу токсичных продуктов сгорания практически при любых условиях эксплуатации автомобиля.

Управление качеством воздушно-топливной смеси

Для обеспечения работы бензинового двигателя на холостых оборотах в камеры сгорания должна подаваться обогащенная топливом горючая смесь. При движении автомобиля с крейсерской скоростью количество воздушной составляющей в смеси увеличивается (обеднение). Повышение нагрузки на двигатель, работа последнего на высоких оборотов также сопровождается обогащением воздушно-топливной смеси. Любые изменения качества смеси должны производиться плавно, по возможности, незаметно для водителя. Электронная система управления двигателем Infiniti обеспечивает прецизионное управление количеством впрыскиваемого в двигатель топлива на основании поступающей от соответствующих датчиков анализа информации о количестве всасываемого в двигатель воздуха, оборотах коленчатого вала и положении педали газа/ дроссельной заслонки.

Измерение массового расхода поступающего в двигатель атмосферного воздуха осуществляется вмонтированным во впускной воздушный тракт датчика измерения массы воздуха (MAF). Датчики данного типа способны отслеживать малейшие изменения расхода и плотности воздушного потока и обладают очень малой инерционностью, практически мгновенно корректируя параметры выдаваемого на ECM информационного сигнала. На основании анализа параметров поступающих от датчика MAF импульсов напряжения ECM вырабатывает команду на соответствующую корректировку количества впрыскиваемого в двигатель топлива путем тончайших корректировок длительности времени открывания игольчатых клапанов инжекторов. Так как диапазон изменений составляет миллисекунды, рабочие параметры двигателя корректируются плавно, без бросков и провалов оборотов.

Система последовательного распределенного впрыска топлива

На рассматриваемых в настоящем Руководстве моделях Infiniti используется распределенная система впрыска, когда каждая из камер сгорания оборудована индивидуальным, помещенным во впускной порт инжектором. Инжекторы обеспечивают тонкодисперсное распыление топлива, под напором впрыскиваемого непосредственно в поток подаваемого во впускной порт камеры сгорания воздушного потока. Так как моменты впрыска согласованы с порядком зажигания, речь идет о системе последовательного типа. Впрыск четко дозированного количества топлива осуществляется непосредственно перед моментом открывания впускного клапана каждого из цилиндров.

Функционирование инжекторов определяется подачей топлива, давление которого в тракте системы питания корректируется в зависимости от глубины разрежения во впускном трубопроводе. Подаваемое под давлением топливо прокачивается через установленный в двигательном отсеке фильтр тонкой очистки и поступает в топливную магистраль с вмонтированными в нее инжекторами. Таким образом, на входе инжекторов постоянно поддерживается избыточное давление, что гарантирует бесперебойность впрыска в любой момент времени при открывании игольчатых клапанов.

За счет перенаправления избытка топлива назад в топливный бак специальный регулятор давления топлива обеспечивает на входе инжекторов постоянный избыточный над давлением во впускном трубопроводе напор величиной в 2.4 кГс/см 2 (235 кПа).

Такая схема позволяет ECM осуществлять регулировку количества впрыскиваемого в камеры сгорания топлива простым изменением длительности времени открывания инжекторов, — чем дольше игольчатые клапаны инжекторов остаются открытыми, тем более обогащенная смесь подается в цилиндры.

Управление углом опережения зажигания

Наибольшую эффективность дает возможность динамического управления зажиганием, когда момент воспламенения воздушно-топливной смеси корректируется в зависимости от конкретных условий функционирования двигателя. В качестве управляющих параметров могут выступать нагрузка на двигатель, частота вращения коленчатого вала, температура охлаждающей жидкости, атмосферное давление (высота над уровнем моря) и пр. Все необходимые сведения ECM получает от соответствующих информационных датчиков.

На моделях Infiniti QX4 используется электронная система зажигания с распределителем. Основными элементами распределителя являются встроенные в него оптический датчик положения распределительного вала (CMP) на светодиоде (LED), мощный транзистор и катушка зажигания (см. иллюстрацию Конструкция распределителя зажигания).

Датчик CMP отслеживает обороты двигателя и поставляет ECM информацию о положении поршней.

Мощный транзистор по сигналам ECM производит активацию катушки зажигания с выдачей в нужный момент времени ВВ напряжения на соответствующую свечу зажигания. Питание на катушку выдается через реле (см. иллюстрацию Местоположение реле зажигания) с выключателя зажигания.

При возникновении в камерах сгорания детонации воздушно-топливной смеси повышенный уровень вибраций улавливается датчиком детонаций (KS) и преобразуется в информационные сигналы, на основании анализа которых ECM производит соответствующее смещение угла опережения зажигания в сторону отставания с целью устранения детонационного процесса.

Управление температурой сгорания

К числу наиболее типичных фотохимических загрязнителей атмосферы относятся окислы азота, образующиеся в продуктах сгорания воздушно-топливной смеси при температурах горения свыше 1093°С. Наиболее очевидным из способов борьбы за сокращение эмиссии NОХ является снижение рабочей температуры в камерах сгорания. Данная цель достигается за счет отвода во впускной тракт небольшого количества инертных отработавших газов, соответствующий процесс получил название процесса подмешивания отработавших газов (EGR).

Система стабилизации оборотов холостого хода

На количество оборотов холостого хода оказывают влияние множество различных факторов. Так, например, холодный двигатель имеет тенденцию к нарушению стабильности оборотов как на холостом ходу, так и под нагрузкой. Включение таких вспомогательных агрегатов, как компрессор К/В, рулевой насос и т.п. неизбежно приводит к снижению оборотов холостого хода. Активация такого энергоемкого оборудования, как головные фары обогреватели стекол, вентиляторы системы охлаждения ведет к увеличению нагрузки на двигатель. С целью стабилизации оборотов холостого хода и обеспечения максимальной экономии расхода топлива в любых условиях эксплуатации система управления двигателем обеспечивает автоматический контроль оборотов холостого хода. На основании анализа поступающих от соответствующих информационных датчиков данных ECM вычисляет оптимальное значение оборотов холостого хода и осуществляет управление количеством подаваемого во впускной трубопровод воздуха посредством клапана дополнительного воздуха IACV-AAC, регулирующего. Так как количество всасываемого в двигатель воздуха определяется на основании информации, поступающей от датчика MAF, ECM всегда имеет возможность соответствующей корректировки длительности открывания инжекторов с целью компоновки воздушно-топливной смеси требуемого состава.

Система бортовой диагностики OBD-II

Приведенный ниже материал носит лишь описательный характер и не привязан ни к какой конкретной марке или модели автомобиля.

Сведения о диагностических приборах

Проверка исправности функционирования компонентов систем впрыска и снижения токсичности отработавших газов производится при помощи универсального цифрового измерителя (мультиметра).

Использование цифрового измерителя предпочтительно по нескольким причинам. Во-первых, по аналоговым приборам достаточно сложно (порой, невозможно), определить результат показания с точностью до сотых и тысячных долях, в то время как при обследовании контуров, включающих в свой состав электронные компоненты, такая точность приобретает особое значение. Второй, не менее важной, причиной является тот факт, что внутренний контур цифрового мультиметра, имеет достаточно высокий импеданс (внутреннее сопротивление прибора составляет 10 миллионов Ом). Так как вольтметр подсоединяется к проверяемой цепи параллельно, точность измерения тем выше, чем меньший паразитный ток будет проходить через собственно прибор. Данный фактор не является существенным при измерении относительно высоких значений напряжения (9—12 В), однако становится определяющим при диагностике выдающих низковольтные сигналы элементов, таких, как, например, лямбда-зонд, где речь идет об измерении долей вольта.

Наиболее удобными приборами для диагностики систем управления двигателем современных моделей автомобилей являются ручные считыватели сканерного типа.

Сканеры первого поколения служат для считывания кодов неисправностей систем OBD-I. Перед применением считыватель следует проверить на соответствие модели и году выпуска проверяемого автомобиля. Некоторые сканеры являются многофункциональными за счет возможности смены картриджа в зависимости от модели диагностируемого автомобиля (Ford, GM, Chrysler и т.п.), другие привязаны к требованиям региональных властей и предназначены для использования в определенных районах мира (Европа, Азия, США и т.д.).

Диагностический сканер New Generation Star (NGS) (широкое применение получили также сканеры FDS 2000, Bosch FSA 560 [ www.bosch.de] и KTS 500 [0 684 400 500]).

С введением в производство отвечающей требованиям последних законодательств по охране окружающей среды системы бортовой диагностики второго поколения (OBD-II) начали выпускаться считыватели специальной конструкции. Некоторые производители наладили выпуск сканеров, предназначенных для использования механиками-любителями в домашних условиях, — спрашивайте в магазинах автомобильных аксессуаров.

Еще одним очень удобным диагностическим прибором является дорогостоящий специализированный диагностический компьютер типа ADC2000 фирмы Launch HiTech), либо обычный персональный компьютер в комплекте со специальным кабелем и адаптером (комплект 1 687 001 439).

Некоторые сканеры помимо обычных диагностических операций позволяют при подсоединении к персональному компьютеру распечатывать хранящуюся в памяти модуля управления принципиальные схемы электрооборудования (если таковые заложены), программировать противоугонную систему, наблюдать сигналы в цепях предохранителя в реальном масштабе времени. Местоположение разъема зависит от марки и модели автомобиля.

Бесплатную версию броузера OBD-II можно скачать с сайта составителей настоящего Руководства arus.spb.ru.

Считывание записанных в память системы самодиагностики кодов неисправностей может быть произведено при помощи контрольной лампы отказов MIL.

Общее описание системы OBD

На оборудованных системой OBD-II модулях на установленной под капотом шильде должна присутствовать запись «OBD-II compliant», а диагностический разъем DLC должен быть 16-контактным. Как правило, системой OBD-II обязательно оснащаются модели, предназначенные для североамериканского рынка, начиная с 1996 г. выпуска, а также европейские модели, начиная с 2000 г. выпуска.

В состав системы OBD входят несколько диагностических устройств, производящих мониторинг отдельных параметров систем снижения токсичности и фиксирующих выявленные отказы в памяти бортового процессора в виде индивидуальных кодов неисправностей. Система производит также проверку датчиков и исполнительных устройств, контролирует эксплуатационные циклы транспортного средства, обеспечивает возможность замораживания параметров и очистки блока памяти.

Все описываемые в настоящем Руководстве модели оборудованы системой бортовой диагностики второго поколения (OBD-II). Основным элементом системы является бортовой процессор, чаще называемый электронным модулем управления (ECM). ECM является мозгом системы управления двигателем. Исходные данные поступают на модуль от различных информационных датчиков и других электронных компонентов (выключателей, реле и т.д.). На основании анализа поступающих от информационных датчиков данных и в соответствии с заложенными в память процессора базовыми параметрами, ECM вырабатывает команды на срабатывание различных управляющих реле и исполнительных устройств, осуществляя тем самым корректировку рабочих параметров двигателя и обеспечивая максимальную эффективность его отдачи при минимальном расходе топлива.

A.

B.

Считывание данных памяти процессора OBD-II производится при помощи специального сканера, подключаемого к 16-контактному диагностическому разъему считывания базы данных (DLC), расположенному слева под панелью приборов.

Считывание записанных в память системы самодиагностики кодов неисправностей может быть произведено при помощи контрольной лампы на приборной доске.

На обслуживание компонентов систем управления двигателем/ снижения токсичности отработавших газов распространяются особые гарантийные обязательства с продленным сроком действия. Не следует предпринимать попыток самостоятельного выполнения диагностики отказов ECM или замены компонентов системы, до выхода сроков данных обязательств, — обращайтесь к специалистам фирменных станций техобслуживания компании Infiniti.

Информационные датчики (в зависимости от комплектации автомобиля)

Кислородные датчики (лямбда-зонды). Датчик вырабатывает сигнал, амплитуда которого зависит от разницы содержания кислорода (О2) в отработавших газах двигателя и наружном воздухе.

Датчик положения коленчатого вала (СКР). Датчик информирует ECM о положении коленчатого вала и оборотах двигателя. Данная информация используется процессором при определении моментов впрыска топлива и установке угла опережения зажигания.

Датчик положения поршней (CYP). На основании анализа поступающих от датчика сигналов ECM вычисляет положение поршня первого цилиндра и использует данную информацию при определении моментов и последовательности впрыска топлива в камеры сгорания двигателя.

Датчик ВМТ (TDC). Вырабатываемые датчиком сигналы используются ECM при определении установок угла опережения зажигания в момент запуска двигателя.

Датчик температуры охлаждающей жидкости двигателя (ЕСТ). На основании поступающей от датчика информации ЕСМ осуществляет необходимые корректировки состава воздушно-топливной смеси и угла опережения зажигания, а также контролирует работу системы EGR.

Датчик температуры всасываемого воздуха (IAT). ECM использует поступающую от датчика IAT информацию при корректировках потока топлива, установок угла опережения зажигания и управлении функционированием системы EGR.

Датчик положения дроссельной заслонки (TPS). Датчик расположен на корпусе дросселя и соединен с осью дроссельной заслонки. По амплитуде выдаваемого TPS сигнала ECM определяет угол открывания дроссельной заслонки (управляется водителем от педали газа) и соответствующим образом корректирует подачу топлива во впускные порты камер сгорания. Отказ датчика, либо ослабление его крепления приводит к перебоям впрыска и нарушениям стабильности оборотов холостого хода.

Датчик абсолютного давления в трубопроводе (МАР). Датчик контролирует вариации глубины разрежения во впускном трубопроводе, связанные с изменениями оборотов коленчатого вала и нагрузки на двигатель и преобразует получаемую информацию в амплитудный сигнал. ECM использует поставляемую датчиками МАР и IAT информацию при тонких корректировках подачи топлива.

Датчик атмосферного давления (BARO). Датчик вырабатывает амплитудный сигнал, пропорциональный изменениям атмосферного давления, который используется ECM при определении продолжительности моментов впрыска топлива. Датчик встроен в модуль ECM и обслуживанию в индивидуальном порядке не подлежит.

Датчик детонации (KS). Датчик реагирует на изменение уровня вибраций, связанных с детонациями в двигателе. На основании поступающей от датчик информации ECM осуществляет соответствующую корректировку угла опережения зажигания.

Датчик скорости движения автомобиля (VSS). Как следует из его названия, датчик информирует процессор о текущей скорости движения автомобиля.

Датчик величины открывания клапана EGR. Датчик оповещает ECM о величине смещения плунжера клапана EGR. Полученная информация используется затем процессором при управлении функционированием системы рециркуляции отработавших газов.

Датчик давления в топливном баке. Датчик является составным элементом системы улавливания топливных испарений (EVAP) и служит для отслеживания давления паров бензина в баке. На основании поступающей от датчика информации ECM выдает команды на срабатывание электромагнитных клапанов продувки системы.

Датчик-выключатель давления системы гидроусиления руля (PSP). На основании поступающей от датчика-выключателя PSP информации ECM обеспечивает повышение оборотов холостого хода за счет срабатывания датчика системы стабилизации оборотов холостого хода (IAC) с целью компенсации возрастающих нагрузок на двигатель, связанных с функционированием рулевого гидроусилителя при совершении маневров.

Трансмиссионные датчики. В дополнение к данным, поступающим от VSS, ECM получает также информацию от датчиков помещенных внутрь коробки передач, либо подсоединенных к ней. К числу таких датчиков относятся: (а) датчик оборотов вторичного (коренного) вала и (b) датчик оборотов промежуточного вала.

Датчик-выключатель управления включением муфты сцепления кондиционера воздуха. При подаче питания от батареи к электромагнитному клапану компрессора К/В соответствующий информационный сигнал поступает на ECM, который расценивает его как свидетельство возрастания нагрузки на двигатель и соответствующим образом корректирует обороты его холостого хода.

Исполнительные устройства

Реле топливного насоса. ECM производит активацию реле топливного насоса при поворачивании ключа зажигания в положение START или RUN. При включении зажигания активация реле обеспечивает подъем давления в системе питания. Местоположение реле топливного насоса на моделях Infiniti QX4 — см. иллюстрацию Местоположение реле топливного насоса).

Инжектор(ы) впрыска топлива. ECM обеспечивает индивидуальное включение каждого из инжекторов в соответствии с установленным порядком зажигания. Кроме того, модуль контролирует продолжительность открывания инжекторов, определяемую шириной управляющего импульса, измеряемой в миллисекундах и определяющей количество впрыскиваемого в цилиндр топлива. Более подробная информация по принципу функционирования системы впрыска, замене и обслуживанию инжекторов приведена в Главе Системы питания и управления.

Распределитель зажигания. Распределитель управляет функционированием катушки зажигания, определяя требуемое базовое опережение на основании вырабатываемых ECM команд.

Клапан стабилизации оборотов холостого хода (IAC). Клапан IAC осуществляет дозировку количества воздуха, перепускаемого в обход дроссельной заслонки, когда последняя закрыта, либо занимает положение холостого хода. Открыванием клапана и формированием результирующего воздушного потока управляет ECM.

Электромагнитный клапан продувки угольного адсорбера. Клапан является составным элементом системы улавливания топливных испарений (EVAP) и, срабатывая по команде ECM, осуществляет выпуск скопившихся в адсорбере паров топлива во впускной трубопровод с целью сжигания их в процессе нормального функционирования двигателя.

Электромагнит управления продувкой угольного адсорбера. Электромагнит используется ECM при проверке системой OBD-II исправности функционирования системы EVAP.

Считывание кодов неисправностей и очистка памяти процессора

При выявлении неисправности, повторяющейся подряд в двух поездках, ECM выдает команду на включение вмонтированной в приборный щиток контрольной лампы «Проверьте двигатель», называемой также индикатором отказов (MIL). Одновременно прибор управления переключается на аварийный режим. Лампа будет продолжать гореть до тех пор, пока память системы самодиагностики не будет очищена от занесенных в нее кодов выявленных неисправностей (см. ниже).

Считывание кодов с помощью сканера

Считывание кодов неисправностей производится путем подключения специального считывателя (см. выше) к 16-контактному диагностическому разъему DLC, — действуйте в соответствии с указаниями меню прибора. Перечень кодов приведен в Спецификациях.

Считывание кодов при помощи контрольной лампы отказов MIL

Заглушите двигатель и выключите зажигание.

При выявлении неисправности, повторяющейся подряд в двух поездках, РСМ выдает команду на включение вмонтированной в приборный щиток контрольной лампы «Проверьте двигатель», называемой также индикатором отказов. Лампа будет продолжать гореть до тех пор, нарушение не исчезнет, и не будет проявляться в течение трех и более поездок.

Для считывания кодов необходимо обеспечить доступ к РСМ с целью переключения селектора на высвечивание кодов посредством диагностических ламп/ контрольной лампы «Проверьте двигатель». РСМ следует снять со своего опорного кронштейна (не отсоединяя электропроводку) и действовать в соответствии с приведенными ниже инструкциями.

  1. Включите зажигание (не запуская двигатель). Контрольная лампа «Проверьте двигатель» на панели приборов должна остаться включенной, что подтверждает выдачу на нее питания от РСМ и исправность самой лампы.

Нарушение порядка описываемой ниже процедуры может привести к случайной очистке памяти РСМ!

  1. При помощи отвертки поверните селектор на стенке РСМ до упора по часовой стрелке. Должны начать мигать диагностические лампы, — после трех проблесков поверните селектор до упора против часовой стрелки;
  2. Внимательно наблюдайте за функционированием контрольной лампы «Проверьте двигатель». Лампа высветит первую цифру кода серией длинных (приблизительно по 0.6 с) проблесков, затем, после 0.9-секундной паузы, приступит к высвечиванию второй цифры кода в виде серии коротких (по 0.3 с) проблесков (обратитесь к иллюстрации). Пауза между кодами около 2 с. С целью определения высвеченного кода запишите количество проблесков каждой серии, так, код 0403 (цепь TPS) будет выглядеть следующим образом: 4 длинных проблеска, затем, после паузы, три коротких. Об отсутствии выявленных системой нарушений свидетельствует высвечивание кода 0505 (см. список кодов неисправностей в Спецификациях);
  3. При повторном включении зажигания после выключения его в процессе считывания кодов система автоматически аннулирует результаты предшествовавшего поиска и процедуру считывания необходимо начать заново.

Запуск двигателя автоматически перекрывает доступ к системе самодиагностики.

Высвеченный код позволяет определить лишь цепь системы, отказ которой был зафиксирован системой самодиагностики. Так, если код указывает на неисправность датчика температуры охлаждающей жидкости (ECT), не исключается также вероятность нарушения функционирования собственно модуля управления. Установить истину можно либо заменой датчика, либо путем проведения соответствующих контрольных измерений.

При проверке цепи, прежде всего, отсоедините соответствующую электропроводку и проверьте состояние ее контактных соединений соединения. В случае необходимости зачистите клеммы, полностью удалив с них следы окисления.

Проверьте надежность крепления кабеля у кабельного наконечника.

Проверьте сопротивление подозреваемого элемента, — если номинальное сопротивление элемента невелико, следует принять во внимание такие факторы, как точность и внутреннее сопротивление измерительного прибора.

Проверьте целостность проводов, идущих к модулю управления (в случае необходимости сверьтесь со схемами электрических соединений).

При считывании кодов, указывающих на чрезмерное занижение уровня сигнала, прежде всего, необходимо удостовериться в надежности заземления соответствующего компонента. Завышение уровня сигнала чаще всего оказывается связанным с обрывом электропроводки.

Информационное содержание разрядов 5-разрядного кода вида P0380

Разряд 1

P

Силовой агрегат

B

Кузов

C

Шасси

Разряд 2

Источник кода

0

Стандарт SAE

1

Расширенный — задаваемый производителем

Разряд 3

Система

0

Система в целом

1

Подмешивания воздуха (Air/Fuel Induction)

2

Впрыска топлива

3

Система зажигания/ Пропуски зажигания

4

Дополнительный контроль выпуска

5

Скорость автомобиля и управление оборотами холостого хода

6

Входные и выходные сигналы модуля управления

7

Трансмиссия

Разряды 4 и 5

Порядковый номер неисправного компонента или цепи

00-99

Очистка памяти OBD II

Для очистки памяти ЕСМ выключите зажигание, и отсоедините клемму батареи не менее чем на 60 секунд, либо подключите к системе сканер и выберите в его меню функцию CLEARING CODES (Удаление кодов), — далее следуйте высвечиваемым на приборе указаниям.

Очистка памяти OBD путем отсоединения отрицательного провода от батареи, сопряжена с удалением установочных параметров двигателя и нарушением стабильности его оборотов на короткое время после первичного запуска, а также со стиранием настроек часов и радиоприемника.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие!

Во избежание повреждения ЕСМ его отключение и подключение следует производить только при выключенном зажигании!

  1. Считайте записанные в память системы коды неисправностей/
  2. Обождите не менее двух секунд, затем поверните селектор на стенке РСМ до упора по часовой стрелке/
  3. Обождите еще не менее двух секунд и поверните селектор до упора против часовой стрелки/
  4. Выключите зажигание.

Записанный в память код удаляется автоматически, если соответствующая неисправность не появляется в течение 20 следующих подряд друг за другом запусков двигателя (количество оборотов должно быть не ниже 450 в минуту).

Проследите, чтобы память системы была очищена перед установкой на двигатель новых компонентов систем снижения токсичности отработавших газов. Если перед запуском системы после замены вышедшего из строя информационного датчика не произвести очистку памяти отказов, ECM занесет в нее новый код неисправности. Очистка памяти позволяет процессору произвести перенастройку на новые параметры. При этом первые 15-20 минут после первичного запуска двигателя до окончания адаптации ECM, может иметь место некоторое нарушение стабильности его оборотов.

Применение осциллографа для наблюдения рабочих системы управления

Общая информация

Цифровые мультиметры отлично подходят для проверки электрических цепей, находящихся в статическом состоянии, а также для фиксации медленных изменений отслеживаемых параметров. При проведении же динамических проверок, выполняемых на работающем двигателе, а также при выявлении причин спорадических сбоев совершенно незаменимым инструментом становится осциллограф.

Некоторые осциллографы позволяют сохранять осциллограммы во встроенном модуле памяти с последующим выводом результатов на печать или перекачкой их на носитель персонального компьютера уже в стационарных условиях.

Осциллограф позволяет наблюдать периодические сигналы и измерять напряжение, частоту, ширину (длительность) прямоугольных импульсов, а также уровни медленно меняющихся напряжений. Осциллограф может быть использован при выполнении следующих процедур:

  • Выявления сбоев нестабильного характера;
  • Проверки результатов произведенных исправлений;
  • Мониторинга активности лямбда-зонда системы управления двигателя, оборудованного каталитическим преобразователем;
  • Анализа вырабатываемых лямбда-зондом сигналов, отклонение параметров которых от нормы является безусловных свидетельством нарушения исправности функционирования системы управления в целом. С другой стороны, правильность формы выдаваемых датчиком импульсов может служить надежной гарантией отсутствия нарушений в системе управления.

Надежность и простота эксплуатации современных осциллографов не требуют от оператора никаких особых специальных знаний и опыта. Интерпретация полученной информации может быть легко произведена путем элементарного визуального сравнения снятых в ходе проверки осциллограмм с приведенными ниже временными зависимостями, типичными для различных датчиков и исполнительных устройств автомобильных систем управления.

Параметры периодических сигналов

Общая информация

Каждый, снимаемый при помощи осциллографа сигнал, может быть описан при помощи следующих основных параметров:

  • Амплитуда: Разность максимального и минимального напряжений (В) сигнала в пределах периода;
  • Период: Длительность цикла сигнала (мс);
  • Частота: Количество циклов в секунду (Гц);
  • Ширина: Длительность прямоугольного импульса (мс, мкс);
  • Скважность: Отношение периода повторения к ширине (В зарубежной терминологии применяется обратный скважности параметр называемый рабочим циклом, выраженный в %);
  • Форма сигнала: Последовательность прямоугольных импульсов, единичные выбросы, синусоида, пилообразные импульсы, и т.п.

Обычно характеристики неисправного устройства сильно отличаются от эталонных, что позволяет опытному оператору легко и быстро выявить отказавший компонент путем анализа соответствующей осциллограммы.

Сигналы постоянного тока

Единственной рабочей характеристикой таких сигналов является напряжение.

Сигналы постоянного тока вырабатываются устройствами, представленными ниже:

Датчик температуры охлаждающей жидкости двигателя (ECT)

Датчик температуры всасываемого воздуха (IAT)

Датчик положения дроссельной заслонки (TPS)

Подогреваемый лямбда-зонд

Измеритель объемного расхода потока воздуха (VAF)

Измеритель массы воздуха (MAF)

Сигналы переменного тока

Основными характеристиками данных сигналов являются амплитуда, частота и форма сигнала.

Датчик детонации (KS)

Индуктивный датчик оборотов двигателя

Частотно-модулированные сигналы (ЧМ)

Рабочими характеристиками частотно-модулированных сигналов являются амплитуда, частота, форма сигнала и ширина периодических импульсов.

Источниками ЧМ сигналов являются устройства, представленные ниже.

Индуктивный датчик положения коленчатого вала (CKP)

Индуктивный датчик положения распределительного вала (CMP)

Индуктивный датчик скорости движения автомобиля (VSS)

Работающие на эффекте Холла датчики оборотов и положения валов

Оптические датчики оборотов и положения валов

Цифровые датчики термометрического измерения массы воздуха (MAF) и абсолютного давления во впускном трубопроводе (MAP)

Сигналы, модулированные по ширине импульса (ШИМ)

Рабочими характеристиками сигналов широтно-импульсной модуляции (ШИМ) являются амплитуда, частота, форма сигнала и скважность периодических импульсов.

Источниками сигналов ШИМ являются представленные далее устройства.

Инжекторы топлива

Устройства стабилизации оборотов холостого хода (IAC)

Первичная обмотка катушки зажигания

Электромагнитный клапан продувки угольного адсорбера (EVAP)

Клапаны системы рециркуляции отработавших газов (EGR)

Кодированная последовательность прямоугольных импульсов

Рабочими характеристиками являются амплитуда, частота и форма последовательности отдельных импульсов.

Подобного рода сигналы генерирует модуль памяти самодиагностики ECM системы управления двигателем.

Путем анализа ширины и формы импульсов, а также подсчета их количества в каждой из групп могут быть считаны хранящиеся в памяти коды неисправностей (код 1223 — см. иллюстрацию Диаграмма проблесков контрольной лампы MIL при выдаче диагностических кодов).

Амплитуда и форма сигнала остаются постоянными, записанное значение будет выдаваться до тех пор, пока память модуля не будет очищена.

Интерпретация осциллограмм

A.

B.

Форма выдаваемого осциллографом сигнала зависит от множества различных факторов и может в значительной мере видоизменяться. В виду сказанного, прежде чем приступать к замене подозреваемого компонента в случае несовпадения формы снятого диагностического сигнала с эталонной осциллограммой, следует тщательно проанализировать полученный результат.

Напряжение

Нулевой уровень эталонного сигнала нельзя рассматривать в качестве абсолютного опорного значения, — «ноль» реального сигнала, в зависимости от конкретных параметров проверяемой цепи, может оказаться сдвинутым относительно эталонного [1] в пределах определенного допустимого диапазона.

Полная амплитуда сигнала зависит от напряжения питания проверяемого контура и также может варьироваться в определенных пределах относительно эталонного значения [3] и [2].

В цепях постоянного тока уровень сигнала ограничивается напряжением питания. В качестве примера можно привести цепь системы стабилизации оборотов холостого хода (IAC), сигнальное напряжение которой никак не изменяется с изменением оборотов двигателя.

В цепях переменного тока амплитуда сигнала уже однозначно зависит от частоты срабатывания источника сигнала, так, амплитуда сигнала, выдаваемого датчиком положения коленчатого вала (CKP) будет увеличиваться с повышением оборотов двигателя.

В виду сказанного, если амплитуда снимаемого при помощи осциллографа сигнала оказывается чрезмерно низкой или высокой (вплоть до обрезания верхних уровней), достаточно лишь переключить рабочий диапазон прибора, перейдя на соответствующую шкалу измерения.

При проверке оборудования цепей с электромагнитным управлением (например, система IAC) при отключении питания могут наблюдаться броски напряжения [4], которые при анализе результатов измерения можно спокойно игнорировать.

Не следует беспокоиться также при появлении таких деформаций осциллограммы, как скашивание нижней части переднего фронта прямоугольных импульсов [5], если, конечно, сам факт выполаживания фронта не является признаком нарушения исправности функционирования проверяемого компонента.

Частота

Частота повторения сигнальных импульсов зависит от рабочей частоты источника сигналов.

Форма снимаемого сигнала может быть отредактирована и приведена к удобному для анализа виду путем переключения на осциллографе масштаба временной развертки изображения.

При наблюдении сигналов в цепях переменного тока временная развертка осциллографа зависит от частоты источника сигнала [3], определяемой оборотами двигателя.

Как уже говорилось выше, для приведения сигнала к удобочитаемому виду достаточно переключить масштаб временной развертки осциллографа.

В некоторых случаях осциллограмма сигнала оказывается развернутой зеркально относительно эталонной зависимости, что объясняется реверсивностью полярности подключения соответствующего элемента и, при отсутствии запрета на изменение полярности подключения, может быть проигнорировано при анализе.

Типичные сигналы компонентов систем управления двигателем

Современные осциллографы обычно оборудованы лишь двумя сигнальными проводами вкупе с набором разнообразных щупов, позволяющих осуществить подключение прибора практически к любому устройству.

Красный провод подключен к положительному полюсу осциллографа и обычно подсоединяется к клемме электронного модуля управления (ECM). Черный провод следует подсоединять к надежно заземленной точке (массе).

Инжекторы впрыска

Управление составом воздушно-топливной смеси в современных автомобильных электронных системах впрыска топлива осуществляется путем своевременной корректировки длительности открывания электромагнитных клапанов инжекторов.

Длительность пребывания инжекторов в открытом состоянии определяется продолжительностью вырабатываемых модулем управления электрических импульсов, подаваемых на вход электромагнитных клапанов. Продолжительность импульсов измеряется в миллисекундах и обычно не выходит за пределы диапазона 1—14 мс. См. типичную осциллограмму управляющего срабатыванием инжектора импульса.

Часто на осциллограмме можно наблюдать также серию коротких пульсаций, следующих непосредственно за инициирующим отрицательным прямоугольным импульсом и поддерживающих электромагнитный клапан инжектора в открытом состоянии, а также резкий положительный бросок напряжения, сопровождающий момент закрывания клапана.

Исправность функционирования ECM может быть легко проверена при помощи осциллографа путем визуального наблюдения изменений формы управляющего сигнала при варьировании рабочих параметров двигателя. Так, длительность импульсов при проворачивании двигателя на холостых оборотах должна быть несколько выше, чем при работе агрегата на низких оборотах. Повышение оборотов двигателя должно сопровождаться соответственным увеличением времени пребывания инжекторов в открытом состоянии. Данная зависимость особенно хорошо проявляется при открывании дроссельной заслонки короткими нажатиями на педаль газа.

  1. При помощи тонкого щупа из прилагаемого к осциллографу набора подсоедините красный провод прибора к инжекторной клемме ECM системы управления двигателем. Щуп второго сигнального провода (черного) осциллографа надежно заземлите.
  2. Проанализируйте форму считываемого во время проворачивания двигателя сигнала.
  3. Запустив двигатель, проверьте форму управляющего сигнала на холостых оборотах.
  4. Резко нажав на педаль газа, поднимите частоту вращения двигателя до 3000 об/мин, — продолжительность управляющих импульсов в момент акселерации должна заметно увеличиться, с последующей стабилизацией на уровне равном, или чуть меньшем свойственному оборотам холостого хода.

Быстрое закрывание дроссельной заслонки должно приводить к спрямлению осциллограммы, подтверждающему факт перекрывания инжекторов (для систем с отсеканием подачи топлива).

При холодном запуске двигатель нуждается в некотором обогащении воздушно-топливной смеси, что обеспечивается автоматическим увеличением продолжительности открывания инжекторов. По мере прогрева длительность управляющих импульсов на осциллограмме должна непрерывно сокращаться, постепенно приближаясь к типичному для холостых оборотов значению.

В системах впрыска, в которых не применяется инжектор холодного запуска, при холодном запуске двигателя используются дополнительные управляющие импульсы, проявляющиеся на осциллограмме в виде пульсаций переменной длины.

В приведенной ниже таблице представлена типичная зависимость длительности управляющих импульсов открывания инжекторов от рабочего состояния двигателя.

Индуктивные датчики

  1. Запустите двигатель и сравните осциллограмму, снимаемую с выхода индуктивного датчика с приведенной (эталонной).

Состояние двигателя

Длительность управляющего импульса, мс

Холостые обороты

1.5—5

2000—3000 об/мин

1.1—3.5

Полный газ

8.2—3.5

  1. Увеличение оборотов двигателя должно сопровождаться увеличением амплитуды вырабатываемого датчиком импульсного сигнала.

Электромагнитный клапан стабилизации оборотов холостого хода (IAC)

В автомобилестроении используются электромагнитные клапаны IAC множества различных типов, выдающих сигналы также различной формы.

Общей отличительной чертой всех клапанов является тот факт, что скважность сигнала должна уменьшаться с возрастанием нагрузки на двигатель, связанной с включением дополнительных потребителей мощности, вызывающих понижение оборотов холостого хода.

Если скважность осциллограммы изменяется с увеличением нагрузки, однако при включении потребителей имеет место нарушение стабильности оборотов холостого хода, проверьте состояние цепи электромагнитного клапана, а также правильность выдаваемого ECM командного сигнала.

Обычно в цепях стабилизации оборотов холостого хода используется 4-полюсный шаговый электродвигатель, описание которого приведено ниже. Проверка 2-контактных и 3-контактных клапанов IAC производится в аналогичной манере, однако осциллограммы выдаваемых ими сигнальных напряжений совершенно непохожи.

Шаговый электромотор, реагируя на выдаваемый ECM пульсирующий управляющий сигнал, производит ступенчатую корректировку оборотов холостого хода двигателя в соответствии с рабочей температурой охлаждающей жидкости и текущей нагрузкой на двигатель.

Уровни управляющих сигналов могут быть проверены при помощи осциллографа, измерительный щуп которого подключается поочередно к каждой из четырех клемм шагового мотора.

  1. Прогрейте двигатель до нормальной рабочей температуры и оставьте его работающим на холостых оборотах.
  2. Для увеличения нагрузки на двигатель включите головные фары, кондиционер воздуха, либо, — на моделях с гидроусилителем руля, — поверните рулевое колесо. Обороты холостого хода должны на короткое время упасть, однако тут же вновь стабилизироваться за счет срабатывания клапана IAC.
  1. Сравните снятую осциллограмму с приведенной (эталонной).

Лямбда-зонд (кислородный датчик)

В данном разделе приводятся осциллограммы, типичные для наиболее часто применяемых на автомобилях лямбда-зондов циркониевого типа, в которых не используется опорное напряжение 0.5В. В последнее время все большую популярность приобретают титановые датчики, рабочий диапазон сигнала которых составляет 0—5 В, причем высокий уровень напряжения выдается при сгорании обедненной смеси, низкий — при сгорании обогащенной.

  1. Подсоедините осциллограф между клеммой лямбда-зонда на ECM и массой.
  2. Удостоверьтесь, что двигатель прогрет до нормальной рабочей температуры.
  1. Сравните выведенную на экран измерителя осциллограмму с приведенной (эталонной) зависимостью.
  1. Если снимаемый сигнал не является волнообразным, а представляет собой линейную зависимость, то, в зависимости от уровня напряжения, это свидетельствует о чрезмерном переобеднении (0—0.15 В), либо переобогащении (0.6—1 В) воздушно-топливной смеси.
  2. Если на холостых оборотах двигателя имеет место нормальный волнообразный сигнал, попробуйте несколько раз резко выжать педель газа, — колебания сигнала не должны выходить за пределы диапазона 0—1 В.
  3. Увеличение оборотов двигателя должно сопровождаться повышением амплитуды сигнала, уменьшение — снижением.

Датчик детонации (KS)

  1. Подсоедините осциллограф между клеммой датчика детонации ECM и массой.
  2. Удостоверьтесь, что двигатель прогрет до нормальной рабочей температуры.
  1. Резко выжмите педаль газа и сравните форму снимаемого сигнала переменного тока с приведенной (эталонной) осциллограммой.
  1. При недостаточной четкости изображения легонько постучите по блоку цилиндров в районе размещения датчика детонации.
  2. Если добиться однозначности формы сигнала не удается, замените датчик KS, либо проверьте состояние электропроводки его цепи.

Сигнал зажигания на выходе усилителя

  1. Подсоедините осциллограф между клеммой усилителя зажигания ECM и массой.
  2. Прогрейте двигатель до нормальной рабочей температуры и оставьте его работающим на холостых оборотах.
  1. На экран осциллографа должна выдаваться последовательность прямоугольных импульсов постоянного тока. Сравните форму принимаемого сигнала с приведенной (эталонной) осциллограммой, уделяя пристальное внимание совпадению таких параметров, как амплитуда, частота и форма импульсов.
  1. При увеличении оборотов двигателя частота сигнала должна увеличиваться прямо пропорционально.

Первичная обмотка катушки зажигания

  1. Подсоедините осциллограф между клеммой катушки зажигания ECM и массой.
  2. Прогрейте двигатель до нормальной рабочей температуры и оставьте его работающим на холостых оборотах.
  1. Сравните форму принимаемого сигнала с приведенной (эталонной) осциллограммой, — положительные броски напряжения должны иметь постоянную амплитуду.
  1. Неравномерность бросков может быть вызвана чрезмерным сопротивлением вторичной обмотки, а также неисправностью состояния ВВ провода катушки или свечного провода.

automn.ru

7.2.3 Система бортовой самодиагностики OBD - общая информация

Система бортовой самодиагностики OBD - общая информация

Приведенный ниже материал носит лишь описательный характер и не привязан ни к какой конкретной марке или модели автомобиля.

Сведения о диагностических приборах

Проверка исправности функционирования компонентов систем впрыска и снижения токсичности отработавших газов производится при помощи универсального цифрового измерителя (мультиметра). Использование цифрового измерителя предпочтительно по нескольким причинам. Во-первых, по аналоговым приборам достаточно сложно (порой, невозможно), определить результат показания с точностью до сотых и тысячных долях, в то время как при обследовании контуров, включающих в свой состав электронные компоненты, такая точность приобретает особое значение. Второй, не менее важной, причиной является тот факт, что внутренний контур цифрового мультиметра, имеет достаточно высокий импеданс (внутреннее сопротивление прибора составляет 10 миллионов Ом). Так как вольтметр подсоединяется к проверяемой цепи параллельно, точность измерения тем выше, чем меньший паразитный ток будет проходить через собственно прибор. Данный фактор не является существенным при измерении относительно высоких значений напряжения (9—12 В), однако становится определяющим при диагностике выдающих низковольтные сигналы элементов, таких, как, например, лямбда-зонд, где речь идет об измерении долей вольта.

Наиболее удобными приборами для диагностики систем управления двигателем современных моделей автомобилей являются ручные считыватели сканерного типа. Сканеры первого поколения служат для считывания кодов неисправностей систем OBD-I. Перед применением считыватель следует проверить на соответствие модели и году выпуска проверяемого автомобиля. Некоторые сканеры являются многофункциональными за счет возможности смены картриджа в зависимости от модели диагностируемого автомобиля (Ford, GM, Chrysler и т.п.), другие привязаны к требованиям региональных властей и предназначены для использования в определенных районах мира (Европа, Азия, США и т.д.).

В последнее время, абсолютно незаменимыми при диагностике систем управления двигателем современных автомобилей стали такие считывающие приборы, как ручные сканеры типа Actron Scantool или AutoXray XP240.

Диагностический сканер New Generation Star (NGS) (широкое применение получили также сканеры FDS 2000, Bosch FSA 560 [www.bosch.de] и KTS 500 [0 684 400 500]).

С введением в производство отвечающей требованиям последних законодательств по охране окружающей среды системы бортовой диагностики второго поколения (OBD-II) начали выпускаться считыватели специальной конструкции. Некоторые производители наладили выпуск сканеров, предназначенных для использования механиками-любителями в домашних условиях, - спрашивайте в магазинах автомобильных аксессуаров.

Еще одним очень удобным диагностическим прибором является дорогостоящий специализированный диагностический компьютер типа ADC2000 фирмы Launch HiTech), либо обычный персональный компьютер в комплекте со специальным кабелем и адаптером (комплект 1 687 001 439).

Адаптер предназначен для согласования диагностических линий К и L (см. иллюстрацию Диагностический разъем системы OBD II, - при подключении используйте стандартный кабель OBD-II J1962) с СОМ-портом компьютера.

Некоторые сканеры помимо обычных диагностических операций позволяют при подсоединении к персональному компьютеру распечатывать хранящуюся в памяти модуля управления принципиальные схемы электрооборудования (если таковые заложены), программировать противоугонную систему, наблюдать сигналы в цепях предохранителя в реальном масштабе времени.

Бесплатную версию броузера OBD II можно скачать с сайта составителей настоящего Руководства arus.spb.ru.

В принципе, считывание записанных в память системы самодиагностики кодов неисправностей может быть произведено при помощи контрольной лампы отказов MIL и провода-перемычки, устанавливаемого между конкретными клеммами 16-контактного диагностического разъема.

Общее описание системы OBD

Диагностический разъем системы OBD II, - при подключении используйте стандартный кабель OBD-II J1962

На оборудованных системой OBD II модулях на установленной под капотом шильде должна присутствовать запись «OBD II compliant», а диагностический разъем DLC должен быть 16-контактным. Как правило, системой OBD II обязательно оснащаются модели, предназначенные для североамериканского рынка, начиная с 1996 г. выпуска, а также европейские модели, начиная с 2000 г. выпуска.

В состав системы OBD входят несколько диагностических устройств, производящих мониторинг отдельных параметров систем снижения токсичности и фиксирующих выявленные отказы в памяти бортового процессора в виде индивидуальных кодов неисправностей. Система производит также проверку датчиков и исполнительных устройств, контролирует эксплуатационные циклы транспортного средства, обеспечивает возможность замораживания параметров и очистки блока памяти.

Все описываемые в настоящем Руководстве модели оборудованы системой бортовой диагностики второго поколения (OBD-II). Основным элементом системы является бортовой процессор, чаще называемый электронным модулем управления (ECM). ECM является мозгом системы управления двигателем. Исходные данные поступают на модуль от различных информационных датчиков и других электронных компонентов (выключателей, реле и т.д.). На основании анализа поступающих от информационных датчиков данных и в соответствии с заложенными в память процессора базовыми параметрами, ECM вырабатывает команды на срабатывание различных управляющих реле и исполнительных устройств, осуществляя тем самым корректировку рабочих параметров двигателя и обеспечивая максимальную эффективность его отдачи при минимальном расходе топлива. Считывание данных памяти процессора OBD-II производится при помощи специального сканера, подключаемого к 16-контактному диагностическому разъему считывания базы данных (DLC), расположенному под декоративной крышкой на центральной консоли впереди рычага привода стояночного тормоза (см. иллюстрации Диагностический разъем DLC расположен в центральной консоли впереди рычага стояночного тормоза под декоративной крышкой , Местоположение разъема DLC в консоли и Диагностический разъем системы OBD II, - при подключении используйте стандартный кабель OBD-II J1962).

В принципе, считывание записанных в память системы самодиагностики кодов неисправностей может быть произведено при помощи провода-перемычки, устанавливаемого между конкретными клеммами 16-контактного диагностического разъема.

На обслуживание компонентов систем управления двигателем/ снижения токсичности отработавших газов распространяются особые гарантийные обязательства с продленным сроком действия. Не следует предпринимать попыток самостоятельного выполнения диагностики отказов ECM или замены компонентов системы, до выхода сроков данных обязательств, - обращайтесь к специалистам фирменных станций техобслуживания компании Opel.

Информационные датчики (в зависимости от комплектации автомобиля)

Кислородные датчики (лямбда-зонды)

Датчик вырабатывает сигнал, амплитуда которого зависит от разницы содержания кислорода (О2) в отработавших газах двигателя и наружном воздухе.

Датчик положения коленчатого вала (СКР)

Датчик информирует ECM о положении коленчатого вала и оборотах двигателя. Данная информация используется процессором при определении моментов впрыска топлива и установке угла опережения зажигания.

Датчик положения поршней (CYP)

На основании анализа поступающих от датчика сигналов ECM вычисляет положение поршня первого цилиндра и использует данную информацию при определении моментов и последовательности впрыска топлива в камеры сгорания двигателя.

Датчик ВМТ (TDC)

Вырабатываемые датчиком сигналы используются ECM при определении установок угла опережения зажигания в момент запуска двигателя.

Датчик температуры охлаждающей жидкости двигателя (ЕСТ)

На основании поступающей от датчика информации ЕСМ/ осуществляет необходимые корректировки состава воздушно-топливной смеси и угла опережения зажигания, а также контролирует работу системы EGR.

Датчик температуры всасываемого воздуха (IAT)

ECM использует поступающую от датчика IAT информацию при корректировках потока топлива, установок угла опережения зажигания и управлении функционированием системы EGR.

Датчик положения дроссельной заслонки (TPS)

Датчик расположен на корпусе дросселя и соединен с осью дроссельной заслонки. По амплитуде выдаваемого TPS сигнала ECM определяет угол открывания дроссельной заслонки (управляется водителем от педали газа) и соответствующим образом корректирует подачу топлива во впускные порты камер сгорания. Отказ датчика, либо ослабление его крепления приводит к перебоям впрыска и нарушениям стабильности оборотов холостого хода.

Датчик абсолютного давления в трубопроводе (МАР)

Датчик контролирует вариации глубины разрежения во впускном трубопроводе, связанные с изменениями оборотов коленчатого вала и нагрузки на двигатель и преобразует получаемую информацию в амплитудный сигнал. ECM использует поставляемую датчиками МАР и IAT информацию при тонких корректировках подачи топлива.

Датчик атмосферного давления (BARO)

Датчик вырабатывает амплитудный сигнал, пропорциональный изменениям атмосферного давления, который используется ECM при определении продолжительности моментов впрыска топлива. Датчик встроен в модуль ECM и обслуживанию в индивидуальном порядке не подлежит.

Датчик детонации (KS)

Датчик реагирует на изменение уровня вибраций, связанных с детонациями в двигателе. На основании поступающей от датчик информации ECM осуществляет соответствующую корректировку угла опережения зажигания.

Датчик скорости движения автомобиля (VSS)

Как следует из его названия, датчик информирует процессор о текущей скорости движения автомобиля.

Датчик величины открывания клапана EGR

Датчик оповещает ECM о величине смещения плунжера клапана EGR. Полученная информация используется затем процессором при управлении функционированием системы рециркуляции отработавших газов.

Датчик давления в топливном баке

Датчик является составным элементом системы улавливания топливных испарений (EVAP) и служит для отслеживания давления паров бензина в баке. На основании поступающей от датчика информации ECM выдает команды на срабатывание электромагнитных клапанов продувки системы.

Датчик-выключатель давления системы гидроусиления руля (PSP)

На основании поступающей от датчика-выключателя PSP информации ECM обеспечивает повышение оборотов холостого хода за счет срабатывания датчика системы стабилизации оборотов холостого хода (IAC) с целью компенсации возрастающих нагрузок на двигатель, связанных с функционированием рулевого гидроусилителя при совершении маневров.

Трансмиссионные датчики

В дополнение к данным, поступающим от VSS, ECM получает также информацию от датчиков помещенных внутрь коробки передач, либо подсоединенных к ней. К числу таких датчиков относятся:

  • датчик оборотов вторичного (коренного) вала
  • датчик оборотов промежуточного вала.

Датчик-выключатель управления включением муфты сцепления кондиционера воздуха

При подаче питания от батареи к электромагнитному клапану компрессора К/В соответствующий информационный сигнал поступает на ECM, который расценивает его как свидетельство возрастания нагрузки на двигатель и соответствующим образом корректирует обороты его холостого хода.

Исполнительные устройства

Реле топливного насоса

ECM производит активацию реле топливного насоса при поворачивании ключа зажигания в положение START или RUN. При включении зажигания активация реле обеспечивает подъем давления в системе питания. Более подробная информация по главному реле приведена в Главе Системы питания и выпуска.

Инжектор(ы) топлива

ECM обеспечивает индивидуальное включение каждого из инжекторов в соответствии с установленным порядком зажигания. Кроме того, модуль контролирует продолжительность открывания инжекторов, определяемую шириной управляющего импульса, измеряемой в миллисекундах и определяющей количество впрыскиваемого в цилиндр топлива. Более подробная информация по принципу функционирования системы впрыска, замене и обслуживанию инжекторов приведена в Главе Системы питания и выпуска.

Модуль управления зажиганием (ICM)

Модуль управляет функционированием катушки зажигания, определяя требуемое базовое опережение на основании вырабатываемых ECM команд.

Клапан стабилизации оборотов холостого хода (IAC)

Клапан IAC осуществляет дозировку количества воздуха, перепускаемого в обход дроссельной заслонки, когда последняя закрыта, либо занимает положение холостого хода. Открыванием клапана и формированием результирующего воздушного потока управляет ECM.

Электромагнитный клапан продувки угольного адсорбера

Клапан является составным элементом системы улавливания топливных испарений (EVAP) и, срабатывая по команде ECM, осуществляет выпуск скопившихся в адсорбере паров топлива во впускной трубопровод с целью сжигания их в процессе нормального функционирования двигателя.

Электромагнит управления продувкой угольного адсорбера

Электромагнит используется ECM при проверке системой OBD-II исправности функционирования системы EVAP.

Считывание кодов неисправностей и очистка памяти процессора

При выявлении неисправности, повторяющейся подряд в дух поездках, ECM выдает команду на включение вмонтированной в приборный щиток контрольной лампы «Проверьте двигатель», называемой также индикатором отказов (MIL). Одновременно прибор управления переключается на аварийный режим. Лампа будет продолжать гореть до тех пор, пока память системы самодиагностики не будет очищена от занесенных в нее кодов выявленных неисправностей (см. ниже).

Считывание кодов с помощью сканера

Считывание кодов неисправностей производится путем подключения специального считывателя (см. выше) к 16-контактному диагностическому разъему DLC (см. иллюстрации Диагностический разъем DLC расположен в центральной консоли впереди рычага стояночного тормоза под декоративной крышкой , Местоположение разъема DLC в консоли и Диагностический разъем системы OBD II, - при подключении используйте стандартный кабель OBD-II J1962), - действуйте в соответствии с указаниями меню прибора. Перечень кодов приведен в Спецификациях.

Считывание кодов при помощи контрольной лампы отказов MIL

  1. Заглушите двигатель и выключите зажигание. Откройте декоративную крышку центральной консоли впереди рычага стояночного тормоза (см. иллюстрации Диагностический разъем DLC расположен в центральной консоли впереди рычага стояночного тормоза под декоративной крышкой и Местоположение разъема DLC в консоли) и замкните на массу клемму 6 (или 5) 16-контактного диагностического разъема DLC, - действуйте крайне осторожно, постарайтесь не погнуть клеммы. Следует помнить, что плохие контакты в клеммных соединениях могут явиться причиной выхода из строя модуля управления, либо нарушению исправности функционирования памяти процессора.
  1. Включите зажигание. Считывание записанных в память модуля управления диагностических кодов производится по проблескам, выдаваемым контрольной лампой отказов MIL/ «Проверьте двигатель» на приборной доске автомобиля (см. Главу Руководство по эксплуатации).
  2. Код каждой неисправности состоит из четырех групп проблесков (разрядов). Количество вспышек в группе соответствует значению разряда кода. Короткая пауза отделяет разряды кода, длинная пауза служит для разделения кодов. Высвечивание каждого кода производится подряд три раза. Коды выдаются в последовательности возрастания номеров. Нулю соответствуют 10 вспышек контрольной лампы.
  3. Высвеченный код позволяет определить лишь цепь системы, отказ которой был зафиксирован системой самодиагностики. Так, если код указывает на неисправность датчика температуры охлаждающей жидкости (ECT), не исключается также вероятность нарушения функционирования собственно модуля управления. Установить истину можно либо заменой датчика, либо путем проведения соответствующих контрольных измерений.
  4. При проверке цепи, прежде всего, отсоедините соответствующую электропроводку и проверьте состояние ее контактных соединений соединения. В случае необходимости зачистите клеммы, полностью удалив с них следы окисления.
  5. Проверьте надежность крепления кабеля у кабельного наконечника.
  6. Проверьте сопротивление подозреваемого элемента, - если номинальное сопротивление элемента невелико, следует принять во внимание такие факторы, как точность и внутреннее сопротивление измерительного прибора.
  7. Проверьте целостность проводов, идущих к модулю управления (в случае необходимости сверьтесь со схемами электрических соединений – см. Главу Бортовое электрооборудование).

При считывании кодов, указывающих на чрезмерное занижение уровня сигнала, прежде всего, необходимо удостовериться в надежности заземления соответствующего компонента. Завышение уровня сигнала чаще всего оказывается связанным с обрывом электропроводки.

Информационное содержание разрядов 5-разрядного кода вида P0380

Разряды кода вида Р 0 3 8 0 имеют следующее значение (слева направо):

1 разряд (слева)

Источник кода

P

силовой агрегат

B

кузов

С

шасси

2 разряд

Источник кода

0

стандартный SAE

1

расширенный - задаваемый производителем

3 разряд

Система

0

система в целом

1

подмешивания воздуха (air/fuel induction)

2

впрыска топлива

3

система зажигания или пропуски зажигания

4

дополнительный контроль выпуска (auxillary emission control)

5

скорость автомобиля и управление холостым ходом

6

входные и выходные сигналы блока управления

7

трансмиссия

4,5 разряды

Порядковый номер неисправности компонента или цепи (00-99)

Очистка памяти OBD II

Для очистки памяти ЕСМ выключите зажигание, извлеките перемычку, заземляющую клемму разъема DLC, и отсоедините клемму батареи не менее чем на 60 секунд, либо подключите к системе сканер и выберите в его меню функцию CLEARING CODES (Удаление кодов), - далее следуйте высвечиваемым на приборе указаниям.

Очистка памяти OBD путем отсоединения отрицательного провода от батареи, сопряжена с удалением установочных параметров двигателя и нарушением стабильности его оборотов на короткое время после первичного запуска, а также со стиранием настроек часов и радиоприемника.

Если установленная на автомобиле стереосистема оборудована охранным кодом, прежде чем отсоединять батарею удостоверьтесь в том, что располагаете правильной комбинацией для ввода аудиосистемы в действие!

Во избежание повреждения ЕСМ его отключение и подключение следует производить только при выключенном зажигании!

Записанный в память код удаляется автоматически, если соответствующая неисправность не появляется в течение 20 следующих подряд друг за другом запусков двигателя (количество оборотов должно быть не ниже 450 в минуту).

Проследите, чтобы память системы была очищена перед установкой на двигатель новых компонентов систем снижения токсичности отработавших газов. Если перед запуском системы после замены вышедшего из строя информационного датчика не произвести очистку памяти отказов, ECM занесет в нее новый код неисправности. Очистка памяти позволяет процессору произвести перенастройку на новые параметры. При этом первые 15-20 минут после первичного запуска двигателя до окончания адаптации ECM, может иметь место некоторое нарушение стабильности его оборотов.

automn.ru

10.3 ABS-система

Система автоматической разблокировки тормозов (ABS-система), предназначена для повышения устойчивости автомобиля в условиях резкого торможения или при движении в плохих дорожных условиях. Это обеспечивается тем, что давление в контуре тормозов регулируется в зависимости от скорости вращения колес, регистрируемой датчиками.

Расположение агрегатов антиблокировочной системы тормозов (ABS-системы)

1. Актюатор 2, 10. Передние датчики скорости 3. Диагностический разъем (DLC1) 4. Блок управления

5. Контрольная лампа исправности ABS-системы

6, 11. Роторы датчиков скорости 7. Задние датчики скорости 8. Диагностический разъем (DLC1) 9. Выключатель сигнала торможения 12. Реле электродвигателя ABS-системы

13. Тяговое реле соленоидного клапана

Агрегаты ABS- системы АКТЮАТОР В состав актюатора входят главный цилиндр, электрогидравлический насос и 4 соленоидных клапана. Предупреждение

Системы ABS поставляются фирмами Bosch и Nippondenso. Актюатор системы фирмы Bosch имеет моноблочное исполнение и содержит встроенный процессорный блок управления и реле соленоидных клапанов, тогда как в системе Nippondenso эти компоненты смонтированы раздельно.

Электронасос предназначен для подкачки жидкости в ресиверы актюатора, через которые жидкость под давлением подается в контур тормозов.

Соленоидные клапаны управляют давлением в контуре тормозов при срабатывании системы ABS, блок клапанов содержит 4 клапана, на колесо приходится по 1 клапану.

ДАТЧИКИ СКОРОСТИ ВРАЩЕНИЯ КОЛЕС Датчики роторного типа, смонтированы на каждом из колес. Сигналы с датчиков поступают на блок управления.

Передние датчики смонтированы на поворотном кулаке, рядом с зубчатыми кольцами роторов. Роторы конструктивно объединены с передними наружными ШРУСами полуосей. Задние датчики смонтированы на кронштейнах задней оси, роторы конструктивно объединены с задней ступицей.

БЛОК УПРАВЛЕНИЯ СИСТЕМЫ ABS

Блок управления системы Nippondenso смонтирован под передней перегородкой кузова, блок управления системы Bosch смонтирован в актюаторе. На блок поступают сигналы от выключателя сигнала торможения и датчиков скорости каждого колеса. Эти сигналы являются исходными данными для регулировки давления в гидроприводе данного колеса. Блок управления также обладает функцией самодиагностики и запоминания отказов. При отказе системы загорается контрольная лампа на панели приборов, а в память заносится код отказа, который можно считать и определить характер неисправности или неисправный узел.

Диагностические коды Код неисправности хранится в памяти до стирания содержимого ячеек памяти, или до устранения неисправности.

При включении зажигания контрольная лампа системы ABS загорается, а после пуска двигателя гаснет. Если лампа продолжает гореть, то в системе ABS зарегистрирована неисправность. Для доступа к кодам отказов ключ зажигания переведите в положение OFF (двигатель не работает). В системе Nippondenso достаньте перемычку (смотрите фотографию) выводов диагностического разъема. На системах обоих типов перемкните выводы Е1 и Тс разъема, ключ зажигания переведите в положение ON (двигатель не запущен) и считайте коды.

Перемычка диагностического разъема ABS-системы Nippondenso

1. Перемычка
Перемыкаемые выводы на двух типах используемых диагностических разъемов
 
Цифры двузначного кода определяются по числу миганий контрольной лампы, разделенных паузой в 1,5 сек (например код 34 – 3 вспышки, пауза 1,5 сек и 4 вспышки). Следующий код (при наличии еще одной неисправности) появляется через 2,5 сек после первого. Если система исправна, то лампа мигает с периодом 0,5 с. Характер отказа определите по прилагаемой таблице. После считывания сотрите коды, для чего перемкните выводы Е1 и Тс разъема, ключ зажигания переведите в положение ON (двигатель не запущен) и нажмите на педаль не менее 8 раз в течение 5 сек. Снимите перемычку и поставьте на место крышку разъема. Сдайте автомобиль в автосервис.

Таблица кодов отказов системы ABS

КОД

ХАРАКТЕР НЕИСПРАВНОСТИ

ПРЕДПРИНИМАЕМЫЕ ДЕЙСТВИЯ

11

Обрыв в цепи реле соленоида Проверить реле соленоидного клапана и проводку цепи реле

12

Короткое замыкание цепи реле соленоидного клапана То же

13

Обрыв в цепи реле реле электродвигателя насоса Проверить реле насоса и проводку цепи реле

14

Короткое замыкание цепи реле электродвигателя насоса То же

21

Неисправна цепь соленоида правого переднего колеса Проверить соленоид актюатора и цепь

22

Неисправна цепь соленоида левого переднего колеса То же

23

Неисправна цепь соленоида правого заднего колеса То же

24

Неисправна цепь соленоида левого заднего колеса То же

25

Обрыв или короткое замыкание в цепи SMC1 Проверить актюатор системы и цепь

26

Обрыв или короткое замыкание в цепи SMC2 Проверить актюатор системы и цепь

27

Обрыв или короткое замыкание в цепи SRC1 Проверить актюатор системы и цепь

28

Обрыв или короткое замыкание в цепи SRC2 Проверить актюатор системы и цепь

31

Неисправен датчик скорости правого переднего колеса Проверить датчики скорости, проводку и разъем датчика

31

Не поступает сигнал с датчика скорости правого переднего колеса Проверить датчик скорости, проводку и разъем датчика

32

Не поступает сигнал с датчика скорости левого переднего колеса То же

33

Не поступает сигнал с датчика скорости правого заднего колеса То же

34

Не поступает сигнал с датчика скорости левого заднего колеса То же

35

Обрыв в цепи датчика скорости правого переднего колеса То же

36

Обрыв в цепи датчика скорости левого переднего колеса То же

37

Число зубцов ротора датчика скорости не соответствует нормальному Проверить исправность ротора датчика (наличие всех зубцов)

38

Обрыв в цепи датчика скорости правого заднего колеса или в самом датчике. Проверить датчик скорости, проводку и разъем датчика

39

Обрыв в цепи датчика скорости левого заднего колеса или в самом датчике Проверить датчик скорости, проводку и разъем датчика

41

Слишком низкое напряжение на батарее Проверьте систему заряда: генератор (см. подраздел 3.4.10), батарею (см. подраздел 3.4.9), регулятор напряжения (см. подраздел 3.4.11).

43

Отказ системы управления разблокировкой тормозов Проверьте все провода и разъемы ABS-системы

44

Обрыв или короткое замыкание в цепи NE-сигнала Проверьте все провода и разъемы от блока управления ABS-системы

49

Обрыв в цепи выключателя сигнала торможения или в самом выключателе Проверьте выключатель и цепь выключателя

51

Заблокирован электродвигатель актюатора Проверьте наличие короткого замыкания в цепи электродвигателя и реле, проверьте батарею

53

Отказ PCM-цепи Проверьте все провода и разъемы от блока управления ABS-системы

58

Обрыв в цепи выключателя сигнала торможения или в самом выключателе Проверьте выключатель и цепь выключателя

61

Отказ системы управления двигателем Проверьте коды отказов системы управления двигателем (см. подраздел 7.2.)

62

Отказ блока управления Требуется ремонт или замена блока управления

Лампа горит непрерывно

Отказ блока управления Требуется ремонт или замена блока управления

automn.ru

6.2.1 Диагностика систем электронного управления и диагностическое оборудование

Диагностика систем электронного управления и диагностическое оборудование

Общая информация

Шины данных и система бортовой самодиагностики (OBD)

Все блоки управления, их датчики и исполнительные устройства (кроме блоков ABS, регулировки наклона фар и дополнительного отопителя дизельных моделей) объединены в единую систему, состоящую из двух шин передачи данных: P-шина (шина данных силового агрегата) и I-шина (шина данных приборов). Обе шины подключены к комбинации приборов (MIU) и данные любого блока управления доступны всем остальным блокам. На моделях без систем TC или ESP данные о скорости автомобиля (от блока ABS) подаются напрямую к MIU и также доступны всем системам автомобиля. На остальных моделях данные о скорости автомобиля поступают либо от блока TC/ABS, либо от блока ESP, подключённых к P-шине.

Организация шины данных

Контакты разъёма DLC №3

Описываемые в настоящем Руководстве модели оборудованы системой бортовой диагностики второго поколения (OBD II), для доступа к которой используется блок электронного управления панелью приборов (DICE), соединённый с I-шиной.

Считывание данных системы OBD II производится при помощи специального сканера, подключаемого к 16-контактному диагностическому разъёму (DLC). При помощи того же сканера осуществляется и очистка памяти процессора. Выполнение процедур считывания кодов DTC и очистки памяти ECM разумно будет поручить специалистам СТО.

Используемый для связи со сканером диагностический разъём организован согласно стандарту ISO 9141-2.

Сведения о диагностических приборах

Проверка исправности функционирования компонентов систем впрыска и снижения токсичности ОГ производится при помощи универсального цифрового измерителя (мультиметра). Использование цифрового измерителя предпочтительно по нескольким причинам. Во-первых, по аналоговым приборам достаточно сложно (порой - невозможно), определить результат показания с точностью до сотых и тысячных долей, в то время как при обследовании контуров, включающих в свой состав электронные компоненты, такая точность приобретает особое значение. Второй, не менее важной, причиной является тот факт, что внутренний контур цифрового мультиметра, имеет достаточно высокий импеданс. Так как вольтметр подсоединяется к проверяемой цепи параллельно, точность измерения тем выше, чем меньший ток будет проходить через собственно прибор. Данный фактор не является существенным при измерении относительно высоких значений напряжения (9 - 12 В), однако становится определяющим при диагностике выдающих низковольтные сигналы элементов, таких, как, например, лямбда-зонд, где речь идёт об измерении долей вольта.

Параллельное наблюдение параметров сигналов, сопротивлений и напряжений во всех цепях управления возможно при помощи разветвителя, включённого последовательно в разъём блока управления двигателем. При этом на выключенном или работающем двигателе, либо во время движения автомобиля, производится измерение параметров сигналов на клеммах разветвителя, из чего делается вывод о возможных дефектах.

Для диагностики электронных систем автомобиля могут применяться специальные диагностические сканеры или тестеры с определённым картриджем (если предусмотрен), универсальным кабелем и разъёмом. Кроме того, для этой цели можно применить специализированный автомобильный диагностический компьютер, специально разработанный для полной диагностики большинства систем современных автомобилей (например, ADC2000 фирмы Launch HiTech). Также, для этой цели можно применить сканеры и специализированные диагностические анализаторы, например, FDS 2000, Bosch FSA 560 (www.bosch.de), KTS500 (0 684 400 500) или обычный персональный компьютер со специальным адаптером, кабелем (например, комплект 1 687 001 439) и установленной программой браузером OBD II.

Бесплатную версию браузера OBD II можно также «скачать» с сайта составителей настоящего Руководства http://arus.spb.ru.

Некоторые сканеры, помимо обычных операций диагностики, позволяют, при соединении с персональным компьютером, распечатывать хранящиеся в памяти блока управления принципиальные схемы электрооборудования (если таковые заложены), программировать противоугонную систему, наблюдать сигналы в цепях автомобиля в реальном масштабе времени.

automn.ru


Смотрите также